
Submitted to: First World Congress on Social Simulation, Kyoto, August 21-25, 2006 

 
Dynamics of task oriented agent behaviour in  

multiple layer social networks  
 

Andreas Ernst, Friedrich Krebs & Claudia Zehnpfund 
Center for Environmental Systems Research, University of Kassel 

Kurt-Wolters-Str. 3, D-34109 Kassel, Germany 
e-mail: {ernst, krebs, zehnpfund}@usf.uni-kassel.de 

www.usf.uni-kassel.de 
 
 
 
 
The context of the model: Task oriented behaviour and a case study 
In numerous real-world situations, people are confronted with tasks that they are unable to fulfil alone. 
Often, such tasks are characterised by the necessity to include a number of different expertises to their 
accomplishment. Consequently, people organise themselves into networks aimed at the completion of 
some specific task. Examples of such situations are to be found in virtually any domain, such as sci-
ence, economy, or in the context of managing and maintaining natural resources.  
The CAVES (Complexity, Agents, Volatility, Evidence, and Scale; see http://cfpm.org/caves/) project 
aims at describing the emergence, the characteristics and long-term behaviour of social networks of 
people using natural resources such as land or water. It is funded by the European Union and includes 
case studies in Great Britain, Poland, and South Africa to acquire data about real world evidence of 
social networks.  
The Polish case study (with input provided by the Wrozlaw Institute of Technology and Wrozlaw 
University) focuses on those parts of the Odra river region that are at risk of regular flooding due to 
neglected or damaged dikes and the lack of maintenance of an old land reclamation system and also 
more generally on land use in the Odra river region. Social mobilisation or collective action by the 
individual farmers is required to maintain or re-establish the system of channels, ditches and dikes of 
the land reclamation system. Between the farmers, acquaintance or friendship links exist. When look-
ing for collaborators to accomplish a maintenance related task however, the friendship network may 
serve as a starting point to build up a collaborator network, but the friendship network may not suffice 
to get all needed expertises together. By word of mouth, additional persons in the collaborator network 
(i.e. collaborators of collaborators) with the necessary expertise are sought, until the task can be 
solved. Such existing networks tend to be used again and again, thus leading to cliques of collabora-
tors with complementary expertises.  
In a more abstract way, situations like those just described can be characterised by the following fea-
tures: They include multiple social networks representing multiple social contexts that interact, like 
friends vs. collaborators. People show goal or task-directed behaviour and use the networks at their 
disposition to fulfil their tasks. The conditions of the emergence of such multiple networks, their long 
term evolution, characteristics, interaction and their dynamics over time is of theoretical as well as 
practical interest to social science as well to complexity science. We will report on this dynamics by 
contrasting different social networks resulting from an agent-based model of task-oriented behaviour 
in a collective action situation. Specific measures have been designed to analyse the behavioural and 
structural efficiency of the networks and knowledge that is accumulated by the agents over time when 
solving tasks of varying difficulty.  
 
Basic modelling concepts 
In order to model the above mentioned situation characteristics, core features of the case study are 
abstracted. We follow a rather strict distinction between physical environment and social environment 
of the agents. This distinction focuses on a separation between physical and social spaces both in 
terms of semantics and techniques used for their representation. For various reasons, the simulation of 
the agent’s physical environment uses a traditional grid based approach. The social “location” of an 



agent is given by his position within a social network context, where an agent is viewed as a node and 
social relations are represented by edges. Since agents are considered here in more than one social 
context an agent’s social environment generally consists of more than one network layer. The mod-
elled agents’ perceptions vary related to their physical or social environment. Both perceptions are 
locally bounded in terms of a perceivable section of the surrounding physical space and in terms of 
network edges and neighbouring nodes (cf. Pujol, Flache, Delgado & Sangüesa, 2005). In the same 
way, the agents’ repertoire of actions differs relating to their respective environment. In the model 
version presented in this paper, the focus is on the development of the social networks and the actions 
related to the natural or physical environment have been reduced to abstract tasks.  
The agents’ social environment is modelled as networks. An agent may be seen as a node in different 
social network contexts. Technically, an agent has slots that are nodes representing potential or actual 
social roles in different networks, so the networks actually resides in the agents’ memory. Unlike in 
other network modelling approaches, agents do actively perceive their social environment and are 
enabled to act in their social network. In the model considered here, an agent has two semantically 
different nodes: One in an friendship or acquaintances network and one in an advisor or collaborator 
network.  
The friendship network can be initialised with empirical data or in a more abstract way with an as-
sumed small-world topology. A collaborator network does not exist initially. Once a task is assigned 
to an agent, it polls its social friendship network for expertise needed to accomplish the specific task 
additionally to its own. The search is started in the direct social neighbourhood of the agent. If the 
collected expertise provided by the network neighbour has been successfully applied, the agent builds 
up an edge to the respective node in the collaborator network. Next time the agent would first poll the 
collaborator context when looking for collaborators. If the agent cannot find all the necessary expertise 
in the directly neighbouring links of the collaborator network it will pursue the search in the 
neighbourhood of collaborators, i.e. collaborators of collaborators to find additional expertises. 
In the following section, a description of the agent architecture that uses the described basic concepts 
will be given.  
 
The SONATA model 
The SONATA model (Social Networks of Abstract Task oriented Agents) has been realised in the 
RePast agent programming framework (http://repast.sourceforge.net). In order to describe the pro-
posed agent architecture we follow the separation of the agent’s functional components: perception, 
action repertoire and cognitive unit.  
The perception unit generates information about the agent’s physical and social environment. The 
perception of the physical environment provides local information about environmental attributes like 
resource availability, types of land cover, the locations of other agents, or in the more abstract version 
presented here, information about tasks and their accomplishment. The perceived social network envi-
ronment is represented by lists of network neighbour nodes. Generally, these lists of nodes originate 
from multiple network layers. The agent “knows” about the semantics of each of those lists (as in the 
example above, it is known whether a network perception relates to the acquaintances network or the 
collaborator network). Perception is locally bounded, so no agent within the network has a global, 
bird’s eye view of the whole network.  
The action an agent may execute in its physical environment is to solve a task that has been assigned 
to it. To do so, it has to complement its own expertise by other expertises needed by looking for col-
laborators accordingly. Additional actions in the agent’s social environment are network-related modi-
fications like strengthening or weakening of outgoing and/or incoming edges, the establishment of 
new edges in already established networks.  
The simulated social environment consists of two network layers. The friendship network the model 
starts with a pre-generated and stable small-world network with a given average node degree resulting 
from rewiring of a regular net according to the algorithm by Watts and Strogatz (1998). This network 
layer remains fixed over the whole simulation run. The second network layer is the collaborator net-
work that builds up during the agent’s search for supporters with specific expertises after being as-
signed a task. Thus, it is actively constructed by connecting to other agents that have already provided 



the leading agent with useful information, following the algorithm described below. In this layer, un-
used edges slowly decay in strength and disappear once their weight becomes zero.  
A task object is represented by a number of different kinds of expertise (know-how, expert knowl-
edge) that is required to perform the task. Tasks are randomly assigned to agents and have a fixed dif-
ficulty which results from the expertise necessary to solve them. Expertises are evenly distributed 
among the agents. Each time step, one agent is assigned with a task for which he needs the expertise of 
other agents. It will utilise its social environment to compile the required expertise to accomplish the 
assigned task. An agents first polls its collaborator network to get help from agents that have previ-
ously been helpful. If it cannot find enough collaborators among its direct ties, it is able to contact 
direct collaborators of its collaborators. It will build up edges in the collaborator network to these 
agents if they supply it with the necessary expertise. Only in the event that polling the collaborator 
network does not yield the necessary expertise, the agent will use its friendship network. If an exper-
tise looked for can be got from a network neighbour, the agent will build a new network edge in the 
collaborator context to the supplier of the expertise.  
 
Results  
In this paper, we will compare scenarios where only the initiator of the task builds up arcs to his col-
laborators (scenario without pairwise linking) with scenarios where all the agents that took part in the 
task build up arcs to every one of the participating agents (i.e. with pairwise linking). In both scenarios 
the agents have a maximum in- and out-degree, i.e., they are able to build or receive a limited number 
of arcs. Special attention will be given to the behavioural efficiency in solving tasks and the structural 
efficiency (i.e. number of links that are built up). All analyses of the networks generated by the RePast 
model have been done with the Pajek network analysis tool (de Nooy, Mrvar, & Batagelj, 2004) and 
R, a free software environment for statistical computing and graphics (http://www.r-project.org/), with 
methods also discussed by Newman (2003) and Wasserman and Faust (1994).  
All the networks discussed here have been produced with the following model parameters: There are 
100 agents. The average degree in the (static) friendship network is set to 20. There are 10 expertises 
needed to solve a task. Accordingly, the maximum degree for the collaborators is set to 9, relating to 
the number of additional expertises (beside the one the agent possesses). Every time step, 1% of the 
agents are randomly assigned a task. All agents are cooperative in the sense that they do not turn down 
a request for joining a task solving group (except if they have reached the maximum in- or out-degree 
or if they are already engaged in a task). Links decay over time and disappear after 150 time steps, 
unless noted otherwise. The simulation stops after 100,000 time steps.  
 
(a) Collaboration networks with and without pairwise linking: Stability and task completion efficiency 
Figure 1 shows the comparison of three types of collaboration networks with regard to the number of 
edges added in each time step (as a measure of re-linking activity), the number of tasks successfully 
completed (a measure of efficiency), and the average out degree of nodes (reflecting the connectivity 
of agents). The three networks differ with regard to their decay of links and to the knowledge that is 
gained from a successful collaboration. In one type of network, only the agent having been assigned 
the task builds up an arc to its collaborators (networks without pairwise linking). Collaborators thus do 
not necessarily know each other after solving a task. In the other (and more realistic) network type, 
successful collaborators establish reciprocal links to each other (nets with pairwise linking).  
The upper graph of the number of edges added shows that both the network with no link decay at all 
and the one with pairwise linking soon reach a high degree of stability, whereas in the network with 
decay and without pairwise linking, a constant high activity of adding new links can be seen. To solve 
tasks successfully in this network, new links have to be added constantly, countering the forgetting 
process.  
The middle graph, depicting the number of tasks successfully completed, shows how two of the net-
works reach a perfect degree of task completion after a certain time whereas the net with decay and 
without pairwise linking only reaches a (highly varying) degree of about 80% of the tasks completed. 
Pairwise linking seems to foster stability and successful task completion as well as a perfect agent 
memory.  



The bottom connectivity graph shows the reason for the imperfect task completion in the network with 
decay and no pairwise linking. It does not reach the level of connectivity necessary to “be ready” when 
the task is assigned.  
 

 
Figure 1: Number of edges added in each time step (top), number of tasks completed (middle), and 
average out degree of nodes (bottom) in three different SONATA collaboration networks: One with no 
decay of links and without pairwise linking (green lines), one with a decay of 150 time steps and also 
without pairwise linking (red lines), and a network with a decay of 150 time steps and pairwise linking 
(black lines).  
 
Figure 2 digs somewhat deeper. In these charts the frequencies in which edges are used in the collabo-
rator networks under different edge decay rates are examined. This variable is negatively correlated to 
the creation of new edges: Only stable links can accumulate a higher number of uses over time. The 
three rows show networks without pairwise linking and with decay rates of 300, 600, and 900 respec-
tively. Horizontally one can compare the frequencies of edge use at different points in time under the 
same edge decay rate. Vertically, one can compare the frequencies at the same point of the simulation 
under different edge decay rates. The network with a decay rate of 900 stabilises soon: Edges once 
built up are used repeatedly. The use is distributed approximately normally among edges. The first 
row with edges decaying after 300 time steps in contrast show no stability being reached. Links decay 
before they reach a high age and have to be reconstructed throughout the whole simulation. In the 
middle row, we see some edges stabilising and some not.  
 



 
 
Figure 2: Histograms of the frequency distribution of edge usage in SONATA collaboration networks 
without pairwise linking with different edge decay rates. The X-Axis displays the number of times 
edges were used, Y-Axis shows the number of edges. The histograms each show the number of edges 
used with a certain frequency in snapshots after 1000, 5000, and 10,000 time steps (horizontally). The 
top row shows results for a decay rate of 300, the middle row for a decay rate of 600, and the bottom 
row for a decay of 900.  
 

 
Figure 3: Collaborator network after 40,000 time steps in the scenario where only the initiator builds 
up an edge to its collaborators (i.e. without pairwise linking). Decay of edges is 150 time steps. This 
network has a very low clustering coefficient of 0.19.  
 
Figure 3 shows a network with no pairwise linking and with a decay of 150 after 40,000 time steps, 
i.e. after a very long running time. The agents are interconnected relatively loosely in one cluster. This 



is the network structure that relates to the low task completion efficiency depicted in figure 1 (red 
line).  
 
(b) Very long term evolution of social networks: The emergence of collaboration cliques 
It is interesting to follow the structure emerging from the task assignment and pairwise agent linking 
algorithm over time. Figure 4 illustrates the typical network structure after 10,000 time steps. Cluster-
ing can be seen to start. Therefore an agent who is situated in such a tightly connected cluster does not 
need to find suitable collaborators in the friendship network or via collaborators of collaborators.  
 

 
Figure 4: Collaborator network with 100 agents (‘A-1’ - ‘A-100’) with 10 different expertises (‘E-1’ - 
‘E-10’) and a maximum in- and out-degree of 9, after 10,000 time steps. At this point of the simulation 
agents with different expertises start to gather into (task oriented) cliques. This network has a cluster-
ing coefficient of 0.68. 
 

 
Figure 5: The same collaboration network after 80,000 time steps. All agents have separated into 
tightly clustered components where they have exactly the nine collaborators needed for their task. No 
more new edges need to be added. The clustering coefficient of this network is 1. That means that all 
neighbours of any agent are adjacent to one another.  



 
Figure 5 finally shows the network from figure 4 after a running time of 80,000 time steps. On one 
hand, it has reached stability and highest task completion efficiency. On the other hand, it has sepa-
rated into 10 cliques of 10 agents that have no more connection between each other in the collaborator 
(but still in their fixed acquaintances) network.  
 
Discussion 
This paper has presented a model of the emergence of task oriented or collaboration networks from an 
acquaintance network. This matches in an abstract way many real-world situations where such a col-
laborator network has to develop on the basis of the social relations that already exist, once some task 
arises.  
The results of the SONATA model show how a forgetting rate higher than the rate of new tasks com-
ing in causes established links to disappear, so that the collaboration network has to be built repeat-
edly. The structure of the network thus never stabilises, and efficient cliques never emerge.  
Stability of network links also depend crucially on the way of linking: If, after having completed a task 
successfully, all participating agents link to each other in both directions (pairwise linking), stable 
structures arise that can be used again as soon the next task is assigned to one of the cluster’s mem-
bers. This can be interpreted as groups remembering the good work they did together and whom they 
did it with. These pairwise linked networks thus accumulate with each task completed a maximum 
degree of knowledge relating to possible future collaborators. The knowledge is distributed evenly 
among collaborators and does not reside only in the agent the task was originally assigned to (no pair-
wise linking).  
The higher efficiency of pairwise linked networks is reflected in a higher degree of tasks successfully 
completed and a higher degree of connectivity, but it has one drawback. Long-term evolution of such 
networks shows a segregation of successful cliques over time. While this may be well adapted to the 
task structure used here (with a constant amount of 10 expertises needed), this system may break down 
if there are substantial fluctuations in the quality of those tasks. Since the tasks assigned are the ab-
straction of the problems posed by a natural environment, this may be an important consideration. It 
will be investigated how shocks on the system, e.g. by changing the task structure, affect the networks 
with regard to their structure and performance. What does the system need to adapt to new situations? 
How long does it take to stabilise again, if ever?  
With further empirical data from the Polish case study, measures of the actual social networks in the 
Odra region will be compared with the simulated ones on a qualitative level to validate the emergent 
network structures. To that aim, we will be incorporating data about networks and physical evidence 
(about geography and land use) from the Polish case study into the coarse grained SONATA model 
described in this paper. This will also lead to the random assignment of tasks being replaced by more 
realistic assumptions about the actual processes included in the maintenance of the land reclamation 
system. The friendship network layer has been fixed over the whole simulation run in the model pre-
sented. This static view has also to be replaced by a dynamic representation that takes into account 
aspects of a (possibly fluctuating) physical neighbourhood and aspects of growth and shrinking due to 
fluctuations in the absolute number of nodes (cf. Jin, Girvan, & Newman, 2001). Also, expertise is not 
distributed evenly in real world situations. In future scenarios, the effect of unevenly distributed exper-
tises will have to be investigated. The emergence of scale-free nets under this scenario seems possible. 
Agents that possess a rare expertise will potentially function as hubs (Albert & Barabási, 2002).  
One very important aspect is still missing in the model presented here. There are no positive or nega-
tive consequences for the agents if they succeed in performing the tasks or not. There is no economic 
effect of actions in the physical environment, like the task of maintaining land-reclamation systems is 
directly related to the physical environment. The structure of the land-reclamation system is that of a 
collective action (Olson, 1965) or of a social dilemma (Dawes, 1980). To simulate a collective action, 
there will be a positive payoff if the task has been successfully completed, i.e., if enough agents with 
the necessary expertise will have participated. But before participating, each agent will have to pay an 
amount of resources (money, time). The resulting payoff will not be received by the agents but will 
increase the value of the arable land where the agents executed the assigned task (reflecting the land 
quality gain by the reclamation system). Agents who live in the vicinity of the land parcels where the 



task was successfully executed will also profit from the maintenance of the land-reclamation system, 
even if they did not participate in the task. Agents therefore have an incentive not to participate in a 
time and money consuming task but to profit from the work of other agents. However, if the necessary 
number of expertises is not reached, no task will be completed and no positive payoff from the envi-
ronment will result. The participating agents will have invested money and time without profiting 
from their work.  
To deal with the growing complexity of decisions agents face in more multifaceted physical and social 
situations, rule based decision making mechanisms will be integrated into the SONATA architecture 
to allow for incorporating more complex, yet modular knowledge structures.  
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