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1. Introduction

In recent decades, interest continues to grow in ecological and social systems that exhibit

multistability, i.e., having alternative stable states. The early hints, that real ecosystems

and socioeconomical systems can exhibit such properties, originated from theoretical

models [1, 2]. Although regime shifts are very easy to show and explore in models,

considerable time and effort was invested to prove experimentally that such phenomena

occur in the real world. Any, even drastic, change in the observed system state may result

from change of the entire landscape following the change of some external parameter, and

not from bistability. Moreover, there are many difficulties in experimentally identifying

factors influencing the behaviour of the system in interest. In spite of methodological and

practical difficulties, solid evidence for the existence of alternative stability domains has

been found in specific case studies of ecosystems and socio-ecological systems [3, 4, 5].

Moreover, manipulation experiments have also provided direct evidence for alternative

stable states [6]. Probably the most famous case of a bistable system is the case of

alternative equilibria in shallow lakes [3]. Over certain ranges of nutrient concentration

in water column, shallow lakes have two alternative equilibria: a clear state dominated

by macrophytic aquatic vegetation, and a turbid state with high algal biomass.

The question of stability of ecosystems’ and social systems’ states is of great

practical importance, for such systems have been observed to fall irreversibly into

degraded states. However, more than the mathematical stability itself, the most salient

question commonly asked in application is whether the system has the ability to absorb

external fluctuations and persist in its current state. Holling [1] has introduced a

definition of resilience, as “a measure of the ability of systems to absorb changes of

state variables, driving variables, and parameters, and still persist”. On the other

hand, stability of the system was defined as “ability of the system to return to an

equilibrium state after a temporary disturbance. The more rapidly it returns, and

with the least fluctuation, the more stable it is”. Some case studies suggest that high

resilience is not necessarily connected with high stability of states, and visa-versa. For

example, the insect populations (spruce budworms [1] and another [7]) in the Northern

forests reveal high resilience, yet strong fluctuations both in numbers of insects and

surviving trees suggest low stability. However, the fact that extreme fluctuations

exhibit a certain predictable periodicity and occur within known bounds such that

the system always returns as a boreal forest suggests a resilience over the long term

(centuries). On the other hand, other examples show that low variability of the system,

connected with rapid recovery from small disturbances, may characterize systems with

little resilience. In those cases management to reduce variability eventually led to a less

resilient system) [8, 9, 10], and many human activities shrink ecological resilience by

attempting to control variability in key ecosystem processes [11].
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2. Ecological vs. engineering resilience

The above definition of resilience does not determine how to measure this quantity in a

strict mathematical manner. This is a question of great practical importance: how one

can examine the resilience properties of a real system, and how can one predict whether

the system will persist in the face of external stresses or shocks or survive natural

fluctuations? How can we measure resilience in order to forecast its dynamics and

manage or prevent the consequences from its breakdown, particularly when it declines

to levels where state shift becomes inevitable?

This practical challenge is complicated by terminological confusion in the literature:

two different definitions of “resilience”. The first definition concentrates on stability near

equilibrium steady state, and regards resilience as a measure of resistance of the system

to disturbances and the speed of return to equilibrium [12, 13, 14, 15, 16] (note that this

definition corresponds also to another designation, “elasticity” [17]; also, it coincides

with the definition of stability, formulated by Holling [1, 18], see above). This definition

arises from traditions of engineering, where the motive is to design systems with a

single operating objective. On one hand, that makes the mathematics tractable, and on

the other, it accommodates an engineer’s goal to develop optimal designs. The second

definition concentrates on the conditions far from any equilibrium steady state, where

instabilities may flip the system into another regime of behaviour (another stability

domain) [1, 8, 11]. This corresponds to the Holling definition cited above.

To avoid this confusion, Holling [18] proposed to distinguish the two as engineering

resilience and ecological resilience. The former would correspond to the first definition

recalled above, while the latter to the second definition.

For anyone concerned about regime shift to a new, perhaps less desirable, stability

domain, ecological resilience would bear more valuable information about systems.

Nevertheless, it could be hard to measure in experiments in the real world. Using

a formal model one can follow all possible dynamics of the system. In the real world,

however, it would most likely be unethical and impractical to apply shocks to the system

in order to measure their value, within which the system will undergo transition to

another state. That is, to establish the resilience of the system, a policy that probes

the system by, e.g., stimulating it might precipitate causal feedbacks which eventually

destroy it. As in the case of ecological and sociological systems one does not have,

in general, many copies of identical systems, so replication for experimental rigor and

redundancy for safety are impossible. Yet, each system is valuable if not priceless, so

probing manipulation is usually too risky for establishing the resilience of such systems.

On the other hand, engineering resilience is a quantity that both can be measured in

the real systems and would be an estimation (perhaps the most adequate possible) of

ecological resilience, but it serves a fundamental assumption that the system has one

optimal equilibrium. Flips between different stability domains in a range of ecosystem

severely challenge that assumption [19].

Before we proceed to review measures of resilience, let us introduce the useful
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concept of potential, which adds mathematical rigor to our use of the cup-and-ball

analogy (“stability landscapes”). Such landscapes which graphically illustrates many

complex relations normally conveyed through mathematics. For continuous systems,

described by a differential equations, d ~X/dt = ~F ( ~X), the potential is defined as

V ( ~X) =
∫

~F ( ~X) d ~X. (1)

The conditions for a stationary stable point: ~F ( ~X∗) = 0, (d~F/d ~X) ~X= ~X∗
< 0 imply,

that for stable stationary point such defined potential has minima. Thus, the system

can be considered as a ball rolling in the cup whose walls take a shape defined by that

potential, always tending towards the bottom. This illustration will be sometimes used

in the general case, to depict universal features of systems, without detailed analysis of

particular properties. Let us note, however, that in multi-dimensional systems it is not

always possible to define a potential, as the value of the integral in (1) may depend on

integration path; a potential exists only if ∂Fi/∂Xj = ∂Fj/∂Xi for all (i, j).

Using these definitions and graphical language we now develop an overview of

resilience measures based on known literature. Some of them measure ecological

resilience, and may be used in practice only to model systems. Others measure

engineering resilience and are of practical use in the real world. However, it is not

obvious that they would in each case reflect the ecological resilience with good accuracy.

These questions will be examined in each particular case.

3. Measures of ecological resilience

In order to present measures of ecological resilience, let us first introduce the notion of

“phase space” for deterministic ecological and social systems. In contrast to physical

equations of motion, such models’ equations are differential equations of the first, not

second, order. Thus, a “force” in such systems is connected with the first, not second,

derivative of state variables. Setting the initial conditions of state variables determines

uniquely (together with the “equations of motion”) its whole previous dynamics. That

is, the phase space consists only of state variables, not of its derivatives. Motion in this

phase space is determined by the shape of the “potential”, as defined in (1). Stationary

states of the system are mapped into stationary points of phase space. Each stable

stationary point will have its “domain of attraction”: a fraction of the whole phase

space, in which starting trajectories will finally end in this stationary point (i.e., a

stable stationary point “attracts” nearby trajectories, while an unstable stationary point

“repulses” trajectories), see Fig. 1.

According to Holling’s definition of “ecological resilience” of a state [1], there

are two measures of this quantity [1, 18]. Firstly, the overall area of the domain of

attraction of this state (that in part determines whether shifts in state variables will

move to trajectories outside the domain), which in one dimension reduces simply to

the width of well. Secondly, the height of the“potential barrier” that separates the

basins of attraction of different regimes (that measures how much the forces have to be
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Figure 1. Example potential in a two-dimensional phase space: (a) potential with

isolines; (b) isolines with velocity field (direction and strength of attraction marked

with vectors)

changed before all trajectories move to another basin of attraction), see Fig. 2. The

former corresponds to the maximum perturbation of a state parameter (e.g., an instant

mortality event) and the latter to the maximum perturbation of a driving force (e.g.,

caused by a temperature peak) [20]. Both of these quantities have to be considered

jointly to establish a proper value of ecological resilience of a given system. Nevertheless,

in many papers only one of them separately is considered as a measure of ecological

resilience, mostly the size of attraction basin [21, 22]. Furthermore, since determining

the maximum disturbance in the state space for individual-based models and multi-

variable models is difficult (and it may be defined in many different ways) [20], some

authors propose to use a simpler measure that correlates to the size of the basin of

attraction, namely the distance from the control parameter (e.g., a “slow” variable of

the system) to its threshold value [20, 23]. However, this simplification would not play
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Figure 2. Size of the domain of attraction and height of potential barrier as measures

of ecological resilience in one dimension

its role for systems with multiple control parameters. Thus, each case should be given

a careful consideration to establish the best possible measure of ecological resilience.

Below, two propositions to facilitate the task of measuring ecological resilience are

presented.

In principle, resilience could be measured by fitting a dynamic model to a time

series, calculating equilibria, and calculating the size of the basin of attraction. In

practice, obtaining adequate fits of such models requires extraordinary data, which

are not usually available [24]. Instead of fitting models, one can use insights from

models to identify indicators of resilience [25]. For example, many experimental studies

have corroborated an old presumption of Darwin (formalized by MacArthur [26]), that

increasing the number of species increases the stability of ecosystem function [27, 28].

Thus, the number of species, especially substitute species in an ecosystem that can

perform the same functions [29, 30], might be an indicator of degree of resilience of

ecosystems.

It should be noted that until they are theoretically validated, such indicators only

have the status of empirical generalizations and should be used carefully, as their

adequacy is not, in general, undisputed. For example, concerning the relationship

between species number and increasing stability of ecological systems, it was argued

that the increase of stability gained by adding new species decreases as species richness

increases [31], and thus it may be treated as a indicator of degree of resilience only in

some range of biodiversity. Moreover, Peterson et al. [21] have recently proposed a more

complicated dependence, taking into regard different scales in which different species

operate: they argue that ecological resilience is generated by diverse, but overlapping,

functions performed by different species within a scale and by apparently redundant

species that operate at different (space and temporal) scales, thereby reinforcing function

across scales.
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Probably the most universal and most frequently used indicator of ecological

resilience is engineering resilience [20, 32]. Engineering resilience and various ways of

its measuring will be a subject of the next section. Also, its validity as an indicator of

ecological resilience will be briefly discussed.

Besides resilience indicators, statistical distributions of systems’ variables offer

another possibility for estimating ecological resilience. For ecological populations, as

ecological resilience of populations is strictly related to probability of their extinction,

knowing the distribution of surviving population sizes within any given control

parameter allows calculation of the probability of a population size equal to zero, i.e.,

of the extinction, and thus to estimate the ecological resilience [1]. For example,

it was shown that the distribution of surviving population sizes for Brevicoryne

brassicae (cabbage aphid) at any given moment of the season (different values of

control parameters in different moments) does not differ seriously from the negative

binomial [33]. Fitting the parameters of this distribution, one is able to estimate the

probability of extinction and degree of system resilience. For each kind of system, it will

be important to explore first the theoretical models so that the appropriate distributions

and their behaviour can be identified. It will then be quite feasible, in the field, to sample

populations in defined areas, apply the appropriate distribution, and use the parameter

values as measures of the degree of resilience [1]. For multi-variable systems, e.g., multi-

species ecosystems, Batabyal has proposed a similar probabilistic approach to estimate

ecological resilience: considering an ecosystem which consists of N species, in which at

least m species must survive so that the system be stable, the measure of ecological

resilience has been proposed as limt→∞ P [A(t) = m], where A(m) denotes the number

of species that are alive at time t, and it can be computed with the distributions of the

probabilities that a certain species is alive/dead.

Concluding these short considerations about ecological resilience, it is clear that

this quantity is not easy to measure. Straightforward measures resulting from the

very definition of ecological resilience (disturbance of a state variable or of a control

parameter resulting in force disturbance) are not easy to quantify for multi-dimensional

models. Moreover, it is not clear how the comparison of the degree of resilience for

different systems with different variables (possibly of different scales) would be possible.

Indicators of resilience are more tractable, although — on the other hand — much less

validated. As it was mentioned above, the best examined indicator of ecological resilience

is engineering resilience. This last quantity itself may be measured in a few different

ways. Now we will proceed to a short review of measures of engineering resilience.

4. Measures of engineering resilience

4.1. Return time (recovering rate)

Return time was introduced as a measure of resilience since the very first attempts to

examine the concept of resilience in ecological and social sciences. Using the distinction

9
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introduced by Holling (see above), return time is a measure of engineering resilience —

an often useful, but not perfect, indicator of the status of the system under examination.

Let us first recall the theoretical foundations of this measure, separately for discrete [34]

and for continuous [35] systems. Then we will briefly discuss its validity.

In both discrete and continuous case, we will deal with a system described by a set

of N equations, for N quantities characterizing the state of the system:

~xt+1 = ~F (~xt) (2)

in the discrete case, and

d~x

dt
= ~F (~x) (3)

in the continuous case. The stable states of the systems, ~x∗, are determined by the

conditions:

~x∗
t = ~F (~x∗

t )

d~x∗

dt
= ~F (~x∗) = 0

for discrete and continuous systems, respectively.

In both cases, one may consider a small perturbation from a stationary state,

~x = ~x∗ + δ~x, and examine its time evolution.

4.1.1. Discrete systems Let us linearize the set of equations in the vicinity of stationary

state:

~x∗ + δ~xt+1 = ~F (~x∗) + ∇ ~F (~x∗) · δ~xt.

As

~x∗ = ~F (~x∗),

one gets a matrix equation for the time evolution of δ~x:

δ~xt+1 = Mδ~xt,

with

Mij ≡
∂Fi

∂xj

∣

∣

∣

∣

∣

~x∗

.

As the elements of matrix M are constant, the perturbation at any moment may be

expressed in terms of the initial perturbation:

δ~xt = Mtδ~x0. (4)

The solution of 4 may be found as

δ~xt =
N
∑

i

λt
i~vi,

where λi are the eigenvalues of matrix M:

Mt ~wi = λt
i ~wi,

10
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and ~vi’s are projections of the initial vector δ~x0 onto the directions of eigenvectors ~wi:

δ~x0 =
N
∑

i

αi ~wi ≡
N
∑

i

~vi.

Let us denote by λmax the eigenvalue of the largest absolute value, and rewrite the

solution as:

δ~xt = λt
max

N
∑

i

(

λi

λmax

)t

~vi.

The perturbation from a stationary state will die away in time on the condition that

|λmax| < 1.

The rate in which it will die away is determined by the value of |λmax|. Thus, one may

define the return time as

TR ≡ 1

1 − |λmax|
.

The shortest possible return time equals to 1, and the longest is infinite. For |λmax| > 1,

this time becomes negative, what means that for unstable equilibria the concept of

return time has no meaning.

4.1.2. Continuous systems Following Wissel [35], let us examine the general properties

of systems described by continuous differential equations (3).

1D case One may linearize the differential equation, describing the system:

dx

dt
= F (x, b), (5)

where dependence on control parameter b was explicitly expressed; in the vicinity of a

stationary state,

d(x∗ + δx)

dt
= F (x∗, b) +

∂F

∂x
(x∗, b)δx.

As

F (x∗, b) = 0,

the solution for δx is:

δx = (δx)0e
λt ≡ (δx)0e

−t/TR, (6)

with −1/TR = λ = ∂F
∂x

(x∗, b), where such defined TR is the characteristic return time.

It is clear, that this quantity has sense only for λ < 0, as for λ > 0 the stationary point

becomes unstable. Thus, a deviation of x from the (stable) equilibrium x∗ will return

exponentially in the course of time with the characteristic return time TR.

Let us examine, how this characteristic return time changes when the control

parameter b approaches the threshold bT (at which one of the equilibria vanishes). One

can see that at the threshold ∂F
∂x

(x∗, bT ) = 0. Therefore, the increase of a characteristic

11
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return time with approaching bT may be expected. Indeed, let us introduce a small

deviation:

y = x − x∗(bT).

Expanding F in terms of y and δb = |b − bT|:

F (x, b) = F (x∗(bT), bT) +
∂F

∂x
(x∗(bT), bT)y

+
1

2

∂2F

∂x2
(x∗(bT), bT)y2 +

∂F

∂b
(x∗(bT), bT)δb. (7)

As the two first terms on the right hand side of the above equal zero, we have:

F (x, b) = αy2 + βδb (8)

α ≡ 1

2

∂2F

∂x2
(x∗(bT), bT),

β ≡ ∂F

∂b
(x∗(bT), bT).

From this, one can write for y∗:

α(y∗)2 + βδb = F (x∗, b) = 0,

and

y∗ = ±
(

−β

α
δb

)1/2

.

As

λ =
∂F

∂x
(x∗, b) =

∂F

∂y
(y∗(δb), δb)

and (differentiating (8))

∂F

∂y
= 2αy,

then, for λ in the vicinity of threshold, one obtains:

λ = 2αy∗(δb) = ±2(αβδb)1/2. (9)

Thus, the general law for the characteristic return time in 1D system reads:

TR ∝ |b − bT|−1/2. (10)

This result means that as it approaches a threshold a disturbed system needs more time

to reach an equilibrium.

N-dimensional case To generalize results (6) and (10) to N -dimensional case (N

different species, age classes, etc.):

d~x

dt
= ~F (~x, b) (11)

some matrix algebra is needed. Let us only recall here the final conclusions (for details,

see Wissel [35]). There are two possible kinds of behaviour after a perturbation from

12
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stable equilibrium: exponential return to the equilibrium or exponentially damped

oscillations around the equilibrium:

xi(t) − x∗
i =

{

δx0
i e

−t/TR

δx0
i e

−t/TR cos(t + ϕi),
(12)

with corresponding characteristic return time

TR ∝
{

|b − bT|−1/2

|b − bT|−1.
(13)

As it seems that equation (11) is quite general for ecological models, the behaviour of

the characteristic return time near the threshold point (13) should be a universal law.

This makes it possible to predict the value of the threshold bT in empirical studies of

ecosystems. To this end one has to disturb the equilibrium state to obtain a few values

of the control parameter b (safely below the threshold point) and measure the return

time to a stable state. Then, if the observed behaviour was exponential, one should plot

T−2
R versus b, or, if the behaviour was exponentially damped oscillations, T−1

R versus b.

According to (13), these points should be fitted to a straight line which would cross the

axis b at a threshold value bT. Thus, empirical data obtained far from the threshold can

serve to determine the value of threshold.

At least one experiment prelimirarily corroborates Wissel’s theory. Harvesting

experiments with Brachionus rubens (a species of rotifers) have shown [36] exponentially

damped oscillations‡, in agreement with (12). The measured characteristic return times

for two different values of harvesting (control parameter) are in agreement with the

theoretical result (13). To fully verify (13), further experimental data are needed.

We should note some apparent discrepancy in the stability conditions. Having a

discrete model (2), one may write down its continuous version in the form of (3):

xt+1 − xt = F (xt) − xt →
dx

dt
= F (x) − x.

Linearizing a discrete equation and its continuous counterpart, one gets:

δxt+1 = λNx0 in the discrete case

δx(t) = (δx)0 exp[(λ − 1)t] in the continuous case.

Thus, in the discrete case the stability condition is |λ| < 1, while in the corresponding

continuous case λ < 1 the question is: what is the status of this non-overlapping region,

λ < −1? Let us note, that for λ < −1, the sign of x in the discrete model changes

from one time step to another, in addition xt+1 − xt grows in time, and the differential

equation is not a good approximation of such a discrete model.

4.1.3. Stochastic model The two above models, discrete and continuous, are

deterministic ones, within which existence and attainability of a stationary state are

assumed. Although there exist biological systems in which variables of interest are

‡ after special correlation analysis, used to eliminate the random influences.
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sufficiently constant and perturbations sufficiently large and infrequent to estimate

return times to equilibrium (e.g., [37, 38]), they are probably exceptions. Most real

systems are continuously buffeted by environmental fluctuations and description in

terms of stochastic models would be more appropriate. An analog of the equilibrium

in a stochastic model is a joint stationary distribution of the model’s variables. Thus,

the analog of the characteristic return time will be the rate at which the transition

distribution approaches the stationary distribution. Here a rapid approach corresponds

to a more resilient system.

Following [16, 39], let us consider here a nonlinear first-order stochastic process:

~Xt = ~f( ~Xt−1, ~Rt), (14)

where ~Rt is a random variable (with mean ~0) representing fluctuations of the system’s

variables caused by environmental variables. If (14) has a stationary distribution ~X∞,

it may be approximated using a Taylor expansion around ~X = ~X∞ and ~Rt = 0:

~Xt ≈ ~A + B ~Xt−1 + ~Et, (15)

~A = ~f( ~X∞,~0) − B ~X∞ (16)

B =
∂ ~f

∂ ~X

∣

∣

∣

∣

∣

∣

( ~X∞,~0)

(17)

~Et =
∂ ~f

∂ ~R

∣

∣

∣

∣

∣

∣

( ~X∞,~0)

~Rt (18)

A linearized process (15) has a stationary distribution provided that all eigenvalues

of the matrix B lie within the unit circle. If this condition is fulfilled, a transition

distribution of ~Xt conditional on the initial value of ~X = ~x0 depends on the particular

form of ~Rt. For example, for a normal random variable ~Rt, ~Xt is also a random variable

with mean vector ~µt and covariance matrix Vt:

~µt = ~µ∞ + Bt(~x0 − ~x∞) (19)

Vt = Σ + BΣBT + (B2)Σ(B2)T + · · · + (Bt−1)Σ(Bt−1)T, (20)

where Σ denotes the covariance matrix of random variable ~Et. In the simplest 1D case,

Xt = a + bXt−1 + Et, (21)

transition distribution has the following parameters:

µt = µ∞ + bt(x0 − µ∞) (22)

vt = v∞[1 − (b2)t]. (23)

The lower the value of |b| (provided that |b| < 1), the more rapidly µt converges towards

µ∞ and the system is more resilient.

Let us stress two important differences between return time in deterministic and

stochastic systems. First, convergence rates of different moments of stochastic processes

can, in general, be different (e.g., in the model (21) mean value converges as bt while

variation converges as (b2)t. Only the convergence rate of the mean value has its

14
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counterpart in deterministic systems. Second, a short return time in a deterministic

system makes the system in some sense more predictable — i.e., irrespective of initial

perturbation from stationary state, the system will soon be near the stationary state. On

the other hand, in stochastic systems the variance of distribution grows in time, finally

obtaining a stationary value. Thus, the more rapid the convergence to the stationary

distribution, the more quickly we lose the information about the system’s state.

4.1.4. Discussion The idea connected with return time as a measure of resilience is,

that the more quickly the system returns to the stable state, the more resilient it is (if

the perturbation grows with time, the system is not resilient at all). It is expected that

approaching the critical point, where the system is driven to another basin of attraction,

the return time grows to infinity — this is an analogue of a phenomenon known in physics

as “critical slowing down”. However, the intuition connecting recovery rate with global

properties of the system may be misleading — namely, return time is not necessarily a

proper estimation of ecological resilience. As it was mentioned above, Holling [1] pointed

out, that return time corresponds more to stability than to the resilience of the system.

Let us give here three simple examples of the inadequacy of this measure:

a) Stable oscillations. Populations of spruce budworms in boreal forests are

examples of systems that reveal stable oscillations around some average state. Such

perturbations are chronic, appearing with a periodicity of 30 to 50 years [40], and as

they do not vanish in time, the return time is infinite. Nonetheless, in the ecological

sense, such systems are highly resilient.

b) Plateau of potential. The second example (Fig. 3a) shows another case of

very long or even infinite return time of a system, which may be highly resilient.

Although the system does not return to the primary state (or returns extremely

slowly), the parameters of the state in which it stays after a little perturbation are

very close to the initial parameters. Thus no catastrophic regime shift takes place,

and the system is resilient.

c) Non-specifity of return time. The third example (Fig. 3b) shows that two

systems, having the same return time, may have very different levels of resilience

— thus, sometimes this measure gives no good comparison of different systems, or

different states of the same system.

d) Variability. As it was mentioned in Section 1, there exist in the literature examples

of systems, for which reduced variability, resulting in rapid return to the equilibrium

after small disturbance, does not enhance but reduces ecological resilience [8, 9, 10].

In conclusion, the return time is not a perfect indicator of ecological resilience. It is

only a measure of engineering resilience. However, in many situations it gives a simple

and useful estimation of the real system state.
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Figure 3. Inadequacy of return time as a measure of ecological resilience in specific

cases: (a) very long or even infinite return time resulting from a plateau of potential

at the bottom of the attraction basin; (b) equal return times for systems with different

depths of their attraction basins

4.2. Time of return and reactivity

The characteristic time of return is an asymptotic property, characterizing the system

within t → ∞. This measure ignores short-term transient behaviour. Numerous authors

have proposed using the whole time required for return to pre-disturbance levels of state

variables as a measure of resilience in laboratory or field experiments [37, 41, 42]). A

mathematical formula taking into account the duration of perturbation was proposed

by Patten and Witkamp [43] as§:

R =
X0

∆X

δt

∆t
, (24)

where X0 is an equilibrium value of the system variable, ∆X denotes the perturbation

from equilibrium, δt — duration time of perturbation, and ∆t — the time needed to

return to original equilibrium.

This formula (24) was further improved by Jordan et al. [45] to take into account

the strength of perturbation:

R =
r(pert)

r

X0

∆X

δt

∆t
, (25)

where r(pert) denotes the value of the disturbing parameter during perturbation, r

denotes the value of the same parameter when the system remains in its steady state,

and the other symbols are the same as in (24).

In model systems various authors have used as a measure of resilience the integral

of perturbation over the time of the whole simulation (put here as ∞, assuming that

simulations run long enough), either in unscaled form [46, 47]:

T =
∫ ∞

0
‖δ ~X(t)‖2dt, (26)

§ In fact, the authors didn’t call the quantity for which the formula was proposed “resilience”, but

“relative stability” — their paper was prior to introducing the notion “resilience” by Holling — but

description of their “relative stability” is now regarded, at least by some authors, as coinciding with

definition of “engineering resilience”, see [44]

16



Validation working paper for CAVES

where δ ~X(t) denotes perturbation changing in time after an initial perturbing pulse,

and ‖ · ‖ is an Euclidean measure of the vector of state variables ~X; or in the scaled

form [48, 49]:

T =
1

‖δ ~X0‖2

∫ ∞

0
‖δ ~X(t)‖2dt, (27)

δ ~X0 denotes the initial displacement from a stable state, and the rest of the notation

is as in (26). For cases in which the initial perturbation is not the maximum value

of perturbation after a perturbing pulse, another form of scaled formula has been

proposed [50, 38]:

T =
1

‖δ ~Xmax‖2

∫ ∞

0
‖δ ~X(t)‖2dt, (28)

with δ ~Xmax denoting the maximum value of displacement from equilibrium.

Neubert and Caswell have noticed [44], that one can use the return time, not only

to describe a particular behaviour succeeding a given particular perturbing pulse, but

to characterize a general property of the system. In order to do this one must use some

property of the distribution of the return times generated by a collection of different

perturbations, such as the maximum or the mean. They proposed a measure that takes

into account all possible initial perturbations, but yields as a result one value that will

characterize the system. This measure is called “reactivity” and describes transient

behaviour of the system, as a complement to the characteristic return time, describing

asymptotic behaviour.

4.2.1. Reactivity

Continuous-time deterministic model Reactivity is defined as the maximum amplifica-

tion rate, over all initial perturbations, immediately following the perturbing pulse [44]:

reactivity ≡ max
‖δ ~X0‖6=0





1

‖δ ~X‖
d‖δ ~X‖

dt

∣

∣

∣

∣

∣

∣

t=0



 , (29)

and an associated measure, maximum amplification, as [44]:

ρmax ≡ max
t≥0

max
‖δ ~X0‖6=0

‖eAtδ ~X0‖
‖δ ~X‖

(30)

The growth rate of perturbation at any time can be expressed as

d‖δ ~X‖
dt

=
d
√

δ ~XTδ ~X

dt
=

δ ~XT(dδ ~X/dt) + (dδ ~X/dt)Tδ ~X

2‖δ ~X‖
. (31)

Linearizing the model (3) around equilibrium, one gets for the time evolution of

perturbation:

dδ ~X(t)

dt
= Aδ ~X(t), (32)
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with A ≡ (∂ ~F/∂ ~X) ~X= ~X∗
( ~X∗ denoting the vector of system variables in stationary

state). Substituting (32) into (react1), one gets:

d‖δ ~X‖
dt

=
δ ~XT(A + AT)δ ~X

2‖δ ~X‖
. (33)

The matrix 1
2
(A + AT) is called the symmetric part or Hermitian part of A and is

designated by H(A). Using this result (33) to (29) one obtains:

1

‖δ ~X‖
d‖δ ~X‖

dt

∣

∣

∣

∣

∣

∣

t=0

=
δ ~XT

0 H(A)δ ~X0

δ ~XT
0 δ ~X0

. (34)

As δ ~X is real and matrix H(A) is real and symmetric, the right hand side of (34) is a

Rayleigh quotient of A and δ ~X: R(A, δ ~X). It is known that for any M and ~V , their

Rayleigh quotient has the following properties:

λmin ≤ R(M, ~V ) ≤ λmax, (35)

R(M, ~mi) = λi, (36)

where λmin,max,i are minimum, maximum and arbitrary eigenvalues of matrix M,

respectively, and ~mmin,max,i are corresponding eigenvectors. Thus, in order to evaluate

(29) there is no need to sample all possible initial conditions, and:

reactivity = λmax(H(A)). (37)

Stationary states, for which λmax(H(A)) > 0, will be called reactive, what means, that

some perturbations, no matter how small, will initially grow in magnitude. Let us also

note that in 1D case (A = A) we have H(A) = A = λ, and negative reactivity coincides

with the inverse characteristic return time: reactivity = −1/TR for reactivity < 0.

Following [44], let us examine a simple example comparing two systems with the

same characteristic return time and different reactivity. Let:

A1 =

[

−1 0.5

0 −2

]

(38)

and

A2 =

[

−1 10

0 −2

]

. (39)

Both A1 and A2 have the same eigenvalues: {−2,−1}. Thus, their characteristic

return times are equal. Nevertheless, the dynamics of systems with A1 and A2 differs

qualitatively (see Fig. 4). Only in the second of them the perturbation grows initially.

Let us calculate reactivity of both systems. For the first one:

H(A1) =

[

−1 0.25

0.25 −2

]

. (40)

and largest eigenvalue λ1
max = (

√
5 − 6)/4 ≈ −0.94 < 0, and for the second one:

H(A1) =

[

−1 5

5 −2

]

. (41)
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Figure 4. Dynamics of the example systems described by A1 and A2 (curves labelled

1 and 2 , respectively)

and largest eigenvalue λ1
max = (

√
101 − 3)/2 ≈ 3.52 > 0. This simple example of

two systems reveals qualitatively different behaviours, which may strongly influence the

probability of persistence of the system in the initial regime. This difference in behaviour

is not reflected in characteristic return times. Reactivity does reflect different kinds of

behaviour of these systems taking place during the short time after perturbation. Thus,

reactivity seems to be a powerful tool for examining properties of dynamic systems, and,

in conjunction with characteristic return time, of measuring resilience of the systems,

as their ability to persist perturbation.

Discrete-time stochastic model An analogue of (29) for discrete-time stochastic systems

(14), (15) was proposed by Ives et al. [39]:

reactivity ≡ max





E
[

‖E[ ~Xt| ~Xt−1] − ~µ∞‖2
]

− E
[

‖ ~Xt−1 − ~µ∞‖2
]

E
[

‖ ~Xt−1 − ~µ∞‖2
]



 , (42)

where E[·] denotes the expected value (in particular, E[ ~Xt| ~Xt−1] denotes the expected

value of ~Xt On the condition that in the previous time-step the vector ~X was equal ~Xt−1),

‖~Y ‖2 ≡ ~Y T~Y , and ~µ∞ denotes the mean of stationary distribution. Matrix BTB is a

positive-definite symmetric matrix (and therefore it has orthogonal eigenvectors). Thus

it may be decomposed as BTB = KΘKT, where Θ is a diagonal matrix containing

eigenvalues of BTB, and K is a matrix containing in its columns the corresponding

eigenvectors, KKT = I. Introducing notation ~Z = KT ~X , and ~ν = KT~µ (~µ — mean of
~X, and ~ν — mean of ~Z), expected values from (42) may be calculated as:

E
[

‖E[ ~Xt| ~Xt−1] − ~µ∞‖2
]

=

= E
[

‖A + B ~Xt−1 − ~µ∞‖2
]

= E
[

‖B( ~Xt−1 − ~µ∞)‖2
]

= E
[

( ~Xt−1 − ~µt−1 + ~µt−1 − ~µ∞)TBTB( ~Xt−1 − ~µt−1 + ~µt−1 − ~µ∞)
]
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= E
[

( ~Xt−1 − ~µt−1)TBTB( ~Xt−1 − ~µt−1)
]

+
[

(~µt−1 − ~µ∞)TBTB(~µt−1 − ~µ∞)
]

(43)

where the first equality results from (21), and the second from (19). To obtain the

reactivity of the system averaged over a long time period, we can let the distribution

of ~Xt−1 be a stationary distribution, ~Xt−1 = ~X∞. In this case, the second term in (43)

becomes zero,

E
[

‖E[ ~Xt| ~Xt−1] − ~µ∞‖2
]

=

= E
[

( ~Xt−1 − ~µt−1)TBTB( ~Xt−1 − ~µt−1)
]

= E
[

(~Zt−1 − ~νt−1)TKTBTBK(~Zt−1 − ~νt−1)
]

= E
[

(~Zt−1 − ~νt−1)TΘ(~Zt−1 − ~νt−1)
]

=
∑

i

ϕiγii, (44)

where ϕi are eigenvalues of Θ (and BTB) and γii are diagonal elements of the covariance

matrix of ~Zt−1. Similarily,

E
[

‖ ~Xt−1 − ~µ∞‖2
]

=
∑

γii. (45)

The worst case scenario is when all ϕi’s but the one corresponding to the largest

eigenvalue of BTB equal zero. Thus,

reactivity = max

[

∑

i ϕiγii −
∑

i γii
∑

i γii

]

= max λBTB. (46)

This is an analogue of the formula (37) for discrete-time stochastic systems. Proper

formulae for continuous-time stochastic systems and discrete-time deterministic systems

may be obtained in a parallel way.

4.3. Variance

There exist numerous experimental evidences that an impending regime shift is signalled

by a rise of spatial and/or time variance (e.g., [51, 52]). Although the variance

component is difficult to distinguish from environmental noise, there are methods that

allow for it and do not require detailed knowledge about mechanisms underlying the

regime shift [32]. It is clear, that time variance in the system variables arises as a

reaction to environmental time-fluctuations. Spatial variance of the system’s variables

can be interpreted as caused by spatial variation in the environment — but also, as it

can be shown [53], by temporal environmental fluctuations, in the absence of any fixed

spatial environmental variation. It is also intuitively clear that the value of a system’s

variables variation is tightly connected with the above discussed measures of resilience:

characteristic return time and/or reactivity. Using the illustrative cup-and-ball analogy,

one may expect that following any perturbation, the ball in the cup with a short return

time rolls instantly towards the bottom of the basin, in contrast to the ball in the cup

with long return time. In the latter case, the ball in the cup spends more time away from

the basin bottom, what means greater variance of the state [39]. The reasons for rising
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variance near the threshold seem general, and should apply to a wide range of plausible

models of regime shifts. Increasing variance in the vicinity of threshold corresponds to

fluctuations in physical models, that grow infinitely near phase transition. Therefore,

increased variance may be an important clue of regime shifts even in cases where the

appropriate model is unknown. Furthermore, increased variance may provide a leading

indicator of regime shifts that can be used in ecosystem management [32].

Mathematical foundation for the treatment of system variance may be found in

[54, 55]. For a 1D system, it is easy to obtain a proper dependence for the variability

of the system on the strength of environmental fluctuations and details of the system’s

potential. Let us deal here with the continuous counterpart of the 1D case of (14):

dXt = F (Xt, b)dt + σ dWt. (47)

where Wt denotes a standard Wiener process, σ measures the noise intensity, and b

denotes the control parameter. The stationary probability density function for such

system is [54, 55] (see also the next subsection for more details):

p0(X, b) =
1

N
e−2V (X,b)/σ2

, (48)

with N as a normalizing constant, and V (X, b) denoting the potential defined in (1).

Let us expand V (X, b) in a Taylor series around X∗(b), denoting the stationary point

of the deterministic counterpart of (47), F (X∗(b)) = 0:

V (X, b) = V (X∗(b), b) +
∂V (X, b)

∂X

∣

∣

∣

∣

∣

X=X∗(b)

(X − X∗(b))

+
1

2

∂2V (X, b)

∂X2

∣

∣

∣

∣

∣

X=X∗(b)

(X − X∗(b))2. (49)

Substituting (49) and observing that from the definition of the stationary state it follows

that (∂V (X, b)/∂X)X=X∗(b) = 0, and one obtains the stationary probability density

function in the form:

p0(X, b) =
1

N
exp



− ∂2V (X, b)

∂X2

∣

∣

∣

∣

∣

X=X∗(b)

(X − X∗(b))2

σ2



 , (50)

where N is different than in (48), but still denotes a normalization constant. Expression

(50) has the form of a normal distribution with mean value µ = X∗(b) (which coincides

with the solution of the deterministic version of (47) and variance

S2 =
σ2

2





∂2V (X, b)

∂X2

∣

∣

∣

∣

∣

X=X∗(b)





−1

. (51)

Approaching a critical value of the control parameter b, variance (51) tends to infinity

(as (∂2V (X, b)/∂X2)X=X∗(b) tends to zero). Thus, system variance compared to variance

from environmental fluctuations may be a measure of resilience that increases infinitely

in the vicinity of a critical value of the control parameter. Let us also note that in

continuous 1D case F = −∂V/∂X, and the value of 2S2/σ2 coincides with the return

time TR.
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The problem of connecting variability with resilience in multivariate systems is

much more complicated. Since resilience is a property of the entire system rather than

of separate variables, the question is how to combine the variabilities of different system

variables to obtain a single community-level measure of resilience [39]. Let us consider

the simplest multidimensional case, i.e., a linear equation:

d ~X

dt
= ~A + B ~X + ~E, (52)

with E denoting the vector for noise, normally distributed with mean ~0 and covariance

matrix Σ. A stationary distribution of the random variable ~X has a Gaussian form with

mean value: ~µ = −B−1 ~A (again coinciding with deterministic stationary solution) and

a variance satisfying the relationship:

S2 = (B + 1)S2(B + 1)T + Σ. (53)

Having found a covariance matrix of the stationary distribution (from (53) for

linear system), there are two ways of comparing variances for multi-dimensional systems,

proposed by Ives et al. (see [16, 39]). The first involves measuring the variance in the

stationary distribution along axes given by the eigenvectors of B. The second method

for comparing the variance of probability distributions uses determinants to measure

the “volume” of covariance matrices. Since the covariance matrices S2 and Σ give the

variances of the stationary distribution and process errors, respectively, the volume of the

difference S2−Σ measures the degree to which species interactions increase the variance

of the stationary distribution relative to the variance of the process error [39]. To avoid

dependence on the dimensionality of the system, the proper measure of resilience would

be defined as:
[

det(S2 − Σ)

det(S2)

]1/N

= det(B + 1)2/N = (λ1λ2 · · · λN )2/N , (54)

which is simply a square of the geometric mean of all eigenvalues. Thus, the second

method takes into account all eigenvalues of the matrix B, while the first takes into

account only the largest.

As it was mentioned above, the variance of the system is tightly connected with the

return time. Thus, as a measure of resilience these same problems with variance arise as

with the return time. Namely, the variability of the system does not necessarily reflect its

ecological resilience (e.g., stable oscillations, special shape of potential — see examples

(a)–(c) in the previous subsection). That is, variance may be a measure of engineering

resilience, not the ecological resilience itself. However, the empirical evidence suggests,

that rising variance may be in most of the situations an useful indicator of impending

threshold. Note, that more important are the changes in variance, not its value itself

(e.g., in an oscillating system as long as variance — however large — does not change,

the system may be expected to remain in its current regime).

22



Validation working paper for CAVES

4.4. “Reddering” of the spectrum

In addition to changes in values of variance, it was also observed that in the vicinity of a

threshold, the power spectrum of the overturning becomes “redder”, i.e., more energy is

contained in the low frequencies [56, 57]. In the simple heuristic picture of cup-and-ball

analogy this is a result of flattening of the bottom of the cup. Let us analyse the 1D

case, described by Eq. (47). Linearizing it around a stationary state X∗, one gets:

dXt = AXt dt + σ dWt, (55)

with

A ≡ ∂F (Xt, b)

∂Xt

∣

∣

∣

∣

∣

(X∗(b),b)

.

It is known [58] that the spectrum of a process described by (55) (Ornstein–Uhlenbeck

process) is:

S(ω) =
1

2π

σ2

A2 + ω2
. (56)

To examine the properties of the spectrum (56) in the vicinity of a threshold, we will

use the results from Section 4.1. From (9), it follows that:

∂F (Xt, b)

∂Xt

∣

∣

∣

∣

∣

(X∗(b),b)

= ±2(αβδb)1/2, (57)

α ≡ 1

2

∂2F

∂x2

∣

∣

∣

∣

∣

(x∗(bT),bT)

,

β ≡ ∂F

∂b

∣

∣

∣

∣

∣

(x∗(bT),bT)

,

δb ≡ |b− bT|,
where bT denotes the threshold value of the control parameter. Substituting (57) into

(56), one gets:

S(ω) =
1

2π

σ2

4αβδb + ω2
. (58)

One can see (cf. Fig. 5) that indeed, approaching the threshold value of the control

parameter, the magnitude of the power spectral density in the limit of zero frequency

increases inversely proportionally to the distance to the bifurcation point, while the

cutoff frequency (the frequency where the spectrum changes from a horizontal to a

decreasing shape) decreases proportionally to the square root.

4.5. Mean first-exit time

As it was mentioned above, most of the real ecological and sociological systems should

be regarded as a stochastic ones. If such a system reveals multistability, in the presence

of noise neither regime is strictly speaking stable — i.e., there is positive probability

that random fluctuations will convert the system to another state. Here we will briefly
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Figure 5. “Reddering” of the spectrum. The spectra S(ω) for three values of the

control parameter b in a log-log plot (arbitrary units)

discuss connections with this concept of mean first-exit time [54, 55, 56, 59]. As in the

previous subsection, we will deal here with the continuous counterpart of (14), namely:

d ~Xt = ~F ( ~Xt)dt + Σd ~Wt, (59)

where ~Wt denotes a standard vector-valued Wiener process, with d ~W d ~WT = 1dt (1

— identity matrix) and Σ measures the noise intensity. For simplicity, let us consider a

1D case of (59):

dXt = F (Xt)dt + σ dWt. (60)

One of methods to characterize the dynamics of the equation (60) is to determine

the probability density function p(X, t) of Xt (hereafter abbreviated as PDF), which

gives all the information on the instantaneous state of the system. The density is given

by the normalized solution of the Fokker–Planck equation [54]:

∂

∂t
p(X, t) =

∂

∂X

[

∂

∂X
V (X)p(X, t)

]

+
σ2

2

∂2

∂X2
p(X, t) ≡ L̂p(X, t), (61)

with

− d

dX
V (X) ≡ F (X). (62)

The stationary solution of (61) is

p0(X) =
1

N
e−2V (x)/σ2

, (63)

with N as a normalizing constant. As dp0/dX = (−2/σ2)(dV (x)/dX)e−2V (x)/σ2

, p0

will have the same number of extrema as V (x). Thus, for multi-well potentials, i.e.,

for multi-stable systems, the stationary PDF will never be concentrated solely in one

of the basins of attraction. Even starting from initial conditions with the PDF as a

spike of probability near one (“desired”) minimum of the potential, from the above
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considerations it is known, that given sufficient time the PDF will “leak” to other stable

states, obtaining eventually a stationary multimodal form of (63). In other words,

even if the deterministic bifurcation point has not been reached, there still is a finite

probability that the stochastic system will leave the potential well. Thus the question

of great practical importance arises: how long does it take for the PDF to obtain a

significant non-zero value out of the region of initial concentration? The life time of the

quasi-stationary state of the system can be described by the mean first exit time from

the potential well.

The time needed to obtain a stationary distribution may be determined based on

spectral theory [55]. Stationary density (63) is an eigenfunction of the operator L̂ in (61)

with eigenvalue 0. Let us order eigenvalues of L̂: · · ·λk < · · ·λ2 < λ1 < 0. Decomposing

p(X, t) on a basis of eigenfunctions of L̂, we see that p approaches the stationary solution

in a characteristic time of order:

τ =
1

|λ1|
. (64)

In the small-noise limit, the first-exit time from an initial subset of phase space D

(containing a stable equilibrium point) is asymtotically exponential with the expectation

value (Kramers’ formula) [54]:

τKramers = e2(V1−V0)/σ2

, (65)

with V1 − V0 as a height of a barrier separating two (meta)stable states. As this height

decreases, the first-exit time drops exponentially. Within time t ≈ τKramers the initial

spike of the PDF approaches the bimodal stationary form. Then, if the relative stabilities

of two states are close, a significant probability of flipping to the another state arises.

It is obvious that in case of substantial asymmetry between states, in spite of

bimodality of the PDF, the stationary behaviour of the system will be more like that

of a system with a unimodal distribution than that with a bimodal. Monahan [60]

has introduced the term stabilization to denote the preferred state, reflected in the

stationary PDF, of one regime relative to the other. Although in the presence of noise

neither regime is strictly speaking ”stable,” but only metastable, a distinct preference

of the system for one regime over the other justifies using this term.

Nevertheless, in each case of multistability there is a finite probability of leaving a

certain state. Assuming the system is in the stationary state, the mean time needed for

this “escape” can be estimated from:

τ =
p

S
=

2

σ2

∫ y2

y1

exp
[

− 2

σ2
V (X)

]

dX
∫ A

ymin

exp
[

2

σ2
V (X)

]

dX, (66)

where the first integral is the probability that the system is within the potential well

limited by y1 and y2; the second integral is the estimation of the inverse probability

current from the potential minimum, ymin, to a point A outside this potential well.

Thus the mean first-exit time is a measure of resilience for stochastic systems: the

larger value of this quantity, the less probable is the flip of the system into distinct

subset of phase space.
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4.6. Fisher Information

One example of current work showing promise in finding new measures of resilience is

that which links Fisher Information to the concept of resilience [61, 62]. By now it has

been shown, that Fisher Information is an indicator of regime flips, both for models [61]

and for field studies [62]. Moreover, Fath et al. claim that Fisher Information may be

a useful measure to identify the degree to which a system is at risk of “flipping” into

a different dynamic regime and hypothesize that it may be possible to infer the system

resilience by the change in Fisher Information [61, 62].

Let us recall briefly the mathematical foundations of Fisher Information [61, 62].

Fisher Information can be variously interpreted as a measure of the ability to

estimate a parameter, as the amount of information that can be extracted from a

set of measurements, and also as a measure of the state of order of a system or

phenomenon [62], and is defined as follows:

I =
∫

1

p(ǫ)

(

dp(ǫ)

dǫ

)2

dǫ, (67)

where p(ǫ) is the probability density as a function of the deviation, ǫ, from the true value

of the variable. In the application to measure resilience of the system, ǫ will measure a

deviation from some reference state, as will be shown below.

Ecological Fisher Information will apply to the systems which may be described

as continuous dynamics systems, and have stable periodic states (including equilibria).

Dividing the steady-state closed loop trajectory in the state space into k sub-segments of

length ∆s, one has to choose an arbitrary reference state among these k possible. Then

ǫ will measure a distance of an arbitrary state from this chosen one. The probability of

observing the system at a particular position is proportional to the amount of time the

system spends in the sub-segment ∆s corresponding to that position. This time equals

to

∆t =
∆s

v̄(s)
,

where v̄(s) denotes the average speed of the system in that segment, or, in the limit

∆s → ∞,

dt =
ds

R′(s)
,

where R′(s) denotes the value of velocity at s. Thus, probability that the system is in

state s equals

P (s) = A dt = A
ds

R′(s)
,

with some constant A. Noting, that
∫

P (s)ds over whole loop should equal 1, one has

for constant A: A =
(

∫ S
0 (1/R′(s))ds

)−1 ≡ 1/T , where T is the period of the system’s
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motion in its state space. As probability density relates to probability by p(s)ds = P (s),

thus for probability density one has:

p(s) =
1

T

1

R′(s)
,

or, for p(t):

p(t) =
1

T

1

R′(t)
, (68)

(here T ≡ ∫ T
0 dt). Fisher Information (67) may be rewritten as:

I =
∫ T

0

1

p(t)

(

dp(t)

dt

)2
dt

R′(t)
,

or, using (68):

I =
1

T

∫ T

0

(R′′(t))2

(R′(t))4
dt. (69)

The speed (R′(t)) and the acceleration (R′′(t)) of the n-dimensional system are obtained

from differential equations by:

R′(t) =

√

√

√

√

n
∑

i=1

(

dxi

dt

)2

R′′(t) =
1

R′(t)

[

n
∑

i=1

dxi

dt

d2xi

dt2

]

.

It is clear from (69) that for a system spending an equal amount of time in any

state Fisher Information will be zero; for the equilibrium point Fisher Information will

be infinite. As it was mentioned above, it has been shown, that changes in Fisher

Information are an adequate indicator of regime shifts, both for field studies and model

systems. Whether it may serve also as a measure to compare resilience of two steady

states is still an open question.

4.7. Summary of measures of engineering resilience

Although very different in details, most of the above reviewed measures of engineering

resilience seem to have much in common. Very simple heuristic analysis within cup-

and-ball analogy may predict that a system with a short return time will also have

little variance, low reactivity [39] and a long time to first exit. Let us summarize by

comparing the behaviour of a ball in cups of two different shapes, which will be called

for simplicity “steep” and “shallow”.

a) Characteristic return time. In the shallow basin, the ball will move to the

bottom more slowly than in the steep basin, after being moved to the basin rim by

disturbance.
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b) Variance. If the balls in both the steep and shallow basins are subjected to

continuous perturbations that occur randomly in either direction, after perturbation

the ball in the steep basin rolls rapidly towards the bottom of the basin, while the

ball in the shallow basin rolls to the bottom slowly. As a result, the ball in the

shallow basin spends more time away from the basin bottom, leading to a stationary

distribution with greater variance than the ball in the steep basin.

c) Spectrum. For a steep basin, the ball will return rapidly after disturbance, thus

the frequencies of its oscillatory movement will be larger then in the shallow basin,

for which a ball will move slowly, with low frequencies.

d) Reactivity. For a steep basin, disturbances may push a ball away from the bottom

of the basin, yet on average the ball is pulled strongly towards the bottom of the

basin between each successive time steps. In contrast, in the shallow basin the

same disturbances on a ball starting at the same distance from the bottom of the

basin may leave the ball farther from the bottom, because the ball is not brought

strongly back towards the bottom between successive disturbances. This represents

a more reactive system than that of the steep basin;

e) Time of first-exit. As in the shallow basin the probability of large displacement

is larger than in the steep basin (greater variance), the time needed to occur for a

disturbance large enough to throw the ball out the cup is less for the shallow basin

than for the steep one.

Although misleading in some special cases (cf. an example in subsection 4.2), in

most of cases this simple analysis proves correct. In principle, one cannot assume that

one of these measures gives the information of all the others and sufficiently characterizes

the system. Although using only one of the measures is mostly justified, one should keep

in mind a possible inconsistency. Measuring (or calculating) more than one of the above

measures may give a more comprehensive description of the system’s properties.

5. Examples

In this section we will examine three models known from literature: shallow lakes

model [3], Brock–Durlauf model [63, 64] and predator–prey model [34].

It will not be our goal here to explore whole ranges of variabilities of models: it

would be (and was) a subject of much more extensive papers. Here we intend only to

calculate examples of measures of resilience, keeping values of most of parameters fixed,

varying the value of only one of them. We will be especially interested in comparing

different measures, possibily by correlating them. Of course, finding positive correlation

of various measures for such chosen values of parameters cannot imply that the measures

correlate in the whole wide range of possible parameter values. Hovewer, it would be a

step in this direction. On the other hand, the lack of strong positive correlation would be

a hint that (some of, or all) measures of resilience should be treated with high caution.

In the 1D models, we will calculate characteristic return time as a measure of
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engineering resilience (reactivity and variance coincide, up to a constant, with this

measure), and width of potential well and barrier height as a measure of ecological

resilience. In the 2D model, we will calculate characteristic return time, reactivity and

variance as measures of engineering resilence, and size of the basin of attraction as a

measure of ecological resilience. Van Nes and Scheffer reported [20], that they found

“almost linear dependence” of recovery rate (inverse of characteristic return time) and

ecological resilience, which they took as a distance from threshold. However, according

to Wissel theory, linear dependence should hold not for recovery rate but rather for its

square, in the vicinity of threshold. Moreover, as it will be shown, the distance from

threshold is not a simple function of well width or barrier height (standard measures of

ecological resilience).

Therefore, it would be rather arbitrary to select only return time or recovery rate, or

its square, for comparison with other resilience measures; we will investigate correlations

of all three mentioned measuses with other ones.

5.1. The shallow lakes model

The minimal model of ecosystem showing multistability (and hysteresis) was proposed

by Scheffer et al. [3] and consists of a single differential equation describing dynamics of

an “unwanted” ecosystem property x:

dx

dt
= a − bx + rf(x). (70)

The factor a promotes the x in the system, b is its decay rate and r — its recovery

rate. With r 6= 0 and appropriate choice of the function f(x), the system may exhibit

multiple equilibria in some range of parameters. The Hill function,

fH(x) =
xp

xp + hp
, (71)

was proposed by Scheffer et al.; it has the following properties (cf. Fig. 6):

(i) fH(0) = 0, limx→∞ fH(x) = 1;

(ii) fH(h) = 1/2;

(iii) it increases steeply at the threshold h (the greater the value of p, the more steeply).

Let us analyse the existence, number and character of stationary points of the model

(70). Stationary points are determined from the condition

dx

dt
= 0 ⇐⇒ r

xp

xp + hp
= bx − a. (72)

From the shape of function fH(x) it follows, that there may exist one or three solutions

of condition (72). The necessary condition for the existence of three solutions is the

existence of at least one point in which rf ′
H(x) > b. For any set of parameters (r, p, h, b)

fulfilling rf ′
H(x)|max > b, the actual existence of three solutions depends on the value of

a (an example is shown in the upper plots in Fig. 7).
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Figure 6. The plot of Hill function for h = 1 and p = 5 (- - - -), p = 10 (· · · · · ·), p = 20

(——), p = 100 (- · - · -).
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Figure 7. At the top: solutions of Eq. (72) for h = 1, p = 20, b = 1 and a = 0 (a);

a = 0.5 (b); a = 0.9 (c). At the bottom: corresponding potentials (73) for the same

values of parameters

From now on, we will deal with systems satysfying this condition. It would be

illustrative to use the concept of “ecological potential” defined by

dx

dt
= −dV (x)

dx
. (73)
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Figure 8. Hysteresis in shallow lake model. While a (the supply of x) is gradually

increased, the system remains in the state with lower value of x, following the lower

solid curve, until it disappears at a2 ≈ 0.81. After the system got “trapped” in the

state with higher value of x, it follows the upper solid curve when a is decreased,

until this state disappears at a1 ≈ 0.21. The dashed curve depicts the unstable state

corresponding to the potential maximum

For each solution of (72), i.e., for each stationary point, there exist an extremum in

the potential. It is clearly seen which of these stationary points are stable (potential’s

minima), and which are unstable (potential’s maxima), cf. the lower plots in Fig. 7.

Let us assume that the supplies of x into the system gradually increases (changes

of a are very slow compared to dynamics of x), beginning from a = 0; and that for this

initial value of a, also x = 0. This is possible, as for a = 0 there always exists stationary

(and stable or metastable) point at x = 0 (the existence of the two other equilibria

depends on the interplay of parameters (b, r, h, p)). With increasing value of a, there

appears the second stable stationary state (or, if it already existed, the relative stability

of these two stationary states changes). Within some critical value of a2, the stationary

state with lower value of x vanishes, and the system undergoes a rapid transition to

the second stationary state. When trying to re-convert the system into the state with

lower value of x, it is not sufficient to decrease a below a2, as the system got “trapped”

in the unfavourable state with higher value of x. In order to return to the state with

lower value of x, it is necessary to decrease the supply of x below the value a1, a1 < a2.

Therefore, hysteresis emerges, as shown in Fig. 8.

When the system is in the “desirable” state (lower value of x), the characteristic

return time TR grows when the parameter a approaches the threshold value a2; this

growth is hardly noticeable far from a2 and extremely rapid in the vicinity of the

threshold, cf. Fig. 9a. The square of the recovery rate (T−2
R ) steeply drops to zero

when approaching a2, as shown in Fig. 9b. The linear dependence T−2
R ∝ |a − a2|

described by Wissel’s theory can be observed only in very close to the threshold. At the

same time, both ecological resilience measures — the well width and the barrier height

— decrease to zero (Fig. 10).
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Figure 9. Characteristic return time TR (a) and square of the recovery rate T−2

R
(b)

as functions of the parameter a in the lower stable branch of the shallow lake model;

the treshold at a2 ≈ 0.81 is marked with the vertical dashed line
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Figure 10. Width of the left potential well (at the left) and height of the barrier (at

the right) as functions of the parameter a in the lower stable branch of the shallow

lake model

The relations of the measures of engineering resilience (TR, T−1
R and T−2

R ) to the

measures of ecological resilience (the well width and the barrier height) are shown

in Fig. 11. It can be seen that the dependences between ecological and engineering

resilience measures have monotonic character.

5.2. Brock–Durlauf model

In the general framework of utility function binary-choice models, there exists a widely

discussed Brock–Durlauf model [63, 64]. The model describes a set of individuals, each

of them faced to a repeating choice. In each times an individual has to choose (+1) or

(−1), depending on relative gains and losses upon each possible choice. Gains and losses

are evaluated using so-called utility function, containing external influences, mutual
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Figure 11. Dependences between ecological and engineering resilience measures (TR,

T−1

R
and T−2

R
versus well width and barrier height) in the lower stable branch of the

shallow lake model

interactions among individuals, and a random term:

σi = argmax
σi∈{−1,+1}



hiσi + σi

∑

j 6=i

Jij

2
σj + ǫi(σi)



 , (74)

and

U(σi) = hiσi + σi

∑

j 6=i

Jij

2
σj + ǫi(σi), (75)

where hi denotes external field, Jij — strength of interaction between individuals i and

j, and ǫi(σi) is a random term. Note that, as the choice is undertaken upon the difference

Ui(−1) − Ui(+1), only the difference ǫi(−1) − ǫi(+1) plays the role in decision making.

The random variable ξi being the difference ǫi(−1) − ǫi(+1) is taken to be logistic one:

ξi ≡ ǫi(−1) − ǫi(+1) (76)

P (ξi < z) =
1

1 + exp(−βz)
, (77)

where β is a constant playing the role of inverse temperature []. The mean-field

approximation to the model assumes that each individual interacts with all the others,

and that the values of parameters are uniform across the system. Thus, the mean-field

continuous-time version of the model is described by a differential equation:

dm

dt
= tanh β(h + Jm) − m, (78)
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Figure 12. The number of solutions (intersections of the curve F (m) and the straight

line m) in Brock–Durlauf model: (a) βJ < 1 — always one solution, F (m) plotted for

h = 0 (——), h = +0.2 (· · · · · ·) and h = −0.2 (- - - -); (b) βJ > 1 — three solutions for

|h| sufficiently small, F (m) plotted for h = 0 (——), h = +0.5 (· · · · · ·) and h = −0.5

(- - - -)
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Figure 13. Hysteresis in Brock–Durlauf model

where m denotes the mean choice of all individuals:

m =
1

N

∑

j

σj.

The potential for (78) reads:

V (m) =
m2

2
− 1

βJ
ln cosh β(h + Jm). (79)

Under the condition βJ > 1, there exists some range of h values within which the

model (78) has three solutions (and the potential (79) has two minima — two stable

stationary points), as shown in Fig. 12. Let us fix the values of β and J : β = 2, J = 1.

A stationary state with m < 0 exists for h ∈ (−∞, +0.2664), while two stable stationary

states exist for h ∈ (−0.2664; +0.2664), and a stationary state with m > 0 exists for

h ∈ (−0.2664; +∞). This produces a hysteresis of width 2×0.2664 = 0.5328, cf. Fig. 13.

Now we will proceed to examine the degree of resilience of a stationary state with

negative mean choice while changing value of h. With increasing h, the left potential
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Figure 14. Width of the left potential well (at the left) and height of the barrier (at

the right) in Brock–Durlauf model with alternative stable states (β = 2, J = 1)
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Figure 15. Characteristic return time TR (a) and square of the recovery rate T−2

R
(b)

as functions of the external fiels h in the m < 0 state of Brock–Durlauf model (β = 2,

J = 1); the treshold at h = +0.2664 is marked with the vertical dashed line

well becomes more and more narrow and shallow, and finally disappears at h = +0.2664,

as shown in Fig. 14.

As depicted in Fig. 15, the characteristic return time TR increases with h

approaching the threshold value hT = +0.2664, very slowly far from the threshold

and rapidly in its vicinity. The square of the recovery rate T−2
R falls to zero at the

threshold, but its linear dependence on |h − hT| predicted by Wissel’s theory can be

observed only very close to hT.

The results of our attempts to correlate the measures of engineering resilience (TR,

T−1
R and T−2

R ) with the measures of ecological resilience (the well width and the barrier

height) are shown in Fig. 16. Monotonic dependences between ecological and engineering

resilience measures can be observed.

5.3. Predator–prey model

Let us analyse a discrete-time two dimensional model that is used to describe the

interactions between predators and preys populations. The simplest form of predator–
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Figure 16. Dependences between ecological and engineering resilience measures (TR,

T−1

R
and T−2

R
versus well width and barrier height) in Brock–Durlauf model with

alternative stable states (β = 2, J = 1)

prey model reads [34]:










Nt+1= Nte
r(1−Nt/K)−aPt

Pt+1 = Ptα max
{

0,
Nt

Pt
(1 − e−aPt) − β

}

,
(80)

where Nt denotes prey population, Pt — predators population, r is the unrestricted rate

of increase of the prey, K is the carrying capacity, a is the “attack rate” of the predators

and α is the “efficiency” with which preys are converted into new adult predators.

Biologically feasible parameter values are such that ϕ = αβ ∈ 〈0, 4〉, θ = aαK > 1 + ϕ.

The model (80) has three equilibrium points (defined by Nt+1 = Nt = N∗ and

Pt+1 = Pt = P ∗):

P ∗ = 0, N∗ = 0,

P ∗ = 0, N∗ = K,

P ∗ =
r

a

(

1 − N∗

K

)

, N∗ 6= K : r
(

1 − N∗

K

)

(1 + αβ) = aαN∗
[

1 − e−r(1−N∗/K)
]

. (81)

Linearizing the set of equations (80) around the stationary point (N∗, P ∗ 6= 0), one

gets:
[

δNt+1

δPt+1

]

=





er(1−N∗/K)−aP∗

(

1 − rN∗

K

)

−aN∗er(1−N∗/K)−aP∗

α
(

1 − e−aP∗

)

−αβ + aαN∗e−aP∗





[

δNt

δPt

]

. (82)
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The characteristic equation of the matrix in (82) reads:

λ2 + bλ + c = 0, (83)

where

b = α
(

β − aN∗e−aP∗

)

− er(1−N∗/K)−aP∗

(

1 − r
N∗

K

)

,

c = −αer(1−N∗/K)−aP∗

[

β
(

1 − r
N∗

K

)

+ aN∗
(

r
N∗

K
e−aP∗ − 1

)]

.

The stationary state will be stable under the condition that |λ1,2| < 1, which leads to

|b| < 1 + c < 2. (84)

When (84) is satisfied, the system will return to the stationary state after perturbation.

Depending on the sign of b2 − 4c, this return will have exponential (b2 − 4c > 0) or

oscillatory (b2 − 4c < 0) character. Here we will be interested in resilience of the

non-trivial stationary state (P ∗ 6= 0). Using (81), we rewrite the coefficients of the

characteristic equation as

b = r − 1 + αβ
[

1 + r
(

1 − N∗

K

)]

− aαN∗, (85)

c =
(

1 − rN∗

K

)

(aαN∗ − αβ) + r2 N∗

K

(

1 − N∗

K

)

(1 + αβ). (86)

Having such a variety of parameters of the model (80), let us focus on some values

of most of the parameters, varying only one of them. Let, for example, r = 1, α = 1,

β = 2, K = 1 (this means that the abundance of prey will be measured as a fraction of

the carrying capacity). For such a choice of parameters, the second (K 6= 0) solution of

(81) will exist for a ∈ (3.0, 4.7). Let us examine basic measures of resilience within this

range of the parameter a. Note that for this model potential does not exist. Thus, as

the measure of ecological resilience we will take only the size of the basin of attraction,

not the barrier height, as it is impossible to define such quantity here.

The area of the basin of attraction grows with increasing a and reaches its maximum

at a ≈ 4.7 (see Fig. 17a), when the single attraction point turns into a stable cycle. At

the other end of the stability range, when approaching a = 3.0, the basin of attraction

does not vanish either; instead, the nontrivial stable solution moves closer and closer to

the trivial stable point (N = 1, P = 0), cf. Fig. 17b, until they finally conincide.

The characteristic return time grows rapidly near both threshold values (both ends

of the stability range), as shown in Fig. 18. The attraction point attracts slower and

slower when it approaches the trivial stable point with predators extinct (near a = 3.0),

and also when it turns into a stable orbit (near a = 4.7).

We have also calculated two other engineering resilience measures, namely reactivity

(Fig. 19) and variance (Fig. 20). The value of reactivity does not change much in

the whole stability range, though it grows monotonically with a. The behaviour of

variance depends on the method used to calculate it; we applied both methods described

in Subsection 4.3 — with the maximum eigenvalue (the left graph) and with both

eigenvalues (the right graph); S2(λmax) increases when approaching both ends of the
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Figure 17. Basin of attraction in predator–prey model: (a) area of the basin

of attraction in the (N, P ) space as a function of the control parameter a, other

parameters as in the main text; (b) shapes of the basin of attraction and the

corresponding attraction points for a = 3.10 (—— and 2), a = 3.85 (- - - - and ×+)

and a = 4.60 (· · · · · · and ×)

stability range, while S2(λ1λ2) increases near the transition to cyclic behaviour (a ≈ 4.7)

and drops to zero near the predator extinction (a = 3.0).

Fig. 21 shows the dependence between the ecological resilience measure (the area of

the basin of attraction) and an engineering resilience measure (the characteristic return

time). No correlation can be observed in case of this model; it can be related to the fact

that the the basin of attraction does not vanish at the ends of the stability range, but

changes its character instead.
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Figure 18. Characteristic return time TR as a function of the parameter a in the

predator–prey model
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Figure 19. Reactivity as a function of the parameter a in the predator–prey model
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Figure 20. Variance as a function of the parameter a in the predator–prey model,

calculated using the maximum eigenvalue (at the left) and both eigenvalues (at the

right)

6. Summary

Growing interest in quantifying stability properties and persistence abilities of ecological

and sociological systems gave rise to many attempts to measure these properties in

both models and real systems. Recently, a concept of “resilience”, introduced by
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Figure 21. Characteristic return time TR versus area of the basin of attraction in the

predator–prey model

Holling [1], has been increasingly applied in various areas of research to describe

numerous kinds of systems: ecological [65, 66, 67], sociological [68], economical [69],

socio-ecological [70, 71, 72, 73], socio-economic [74], ecological-economic [75, 76, 77];

and even in urban sciences (planning) to describe properties of cities [78]. Since it has

been used in so many contexts and defined in so many ways that the very meaning

of “resilience” gets increasingly vague and unspecified [79], (according to Anderies et

al. [80], resilience is better described as a collection of ideas about how to interpret

complex systems. As a result attempts to add rigor have tried to define specific measures

of this quantity: either in a strict mathematical way (for models and, at least in principle,

for real systems) or as certain kinds of quantitative indicators (for real systems). We have

reviewed a few of the most commonly used measures of resilience: measures in phase

space and indicators for “ecological resilience”; return rate, time of return, reactivity,

variance and mean time for first escape for “engineering resilience”. Applicability of

all these measures depends on the kind of the system: none of them is universal in

convenience and its capacity to inform. Our short review does not claim to exhaust

all existing propositions of measuring resilience. The literature on this subject is too

extensive to be summarized in a short study. Also, the work on this field is still in

progress (see, for example, Section 4.6).

Here we have examined only some measures, applicability of which is well

established, which are widely used and are relatively universal with reference to different

models and systems.
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