
 1

Technical Documentation of the SoNARe model

1 Model implementation
The overall model documented here consists of the main model named SoNARe and two
coupled sub-models. This documentation focuses on the SoNARe model which aims to
capture farmer decision making and some of the key social characteristics of the Odra case in
an agent-based model. The first sub-model is a simple and abstracted hydro-agricultural
model that reflects the main environmental characteristics of the target region. It provides the
SoNARe agents with feedback about hydrological dependencies and crop yields under
fluctuating climatic conditions in the simulated area. The second sub-model is the Simple
Agro-Economics Model (SAEM) which models crop yield and production economics and
provides SoNARe agents with feedback about the economic aspects of their farming
activities. Both sub-models were developed at Wroclaw University of Technology and are
documented in detail elsewhere.
This documentation starts with the core architecture of SoNARe. Based on this core the two
versions of the SoNARe model were developed which are documented in separate subsequent
sections.
The first, more abstract version is named SoNARe-A and takes a quantitative approach to
modelling farmers’ perceptions and their consideration of social and economic factors that
bear on their decisions. Amongst other things, this allows the investigation of sets of scenarios
that show shifts from more economically driven farmer populations to more socially driven
farmer populations and vice versa.
The second version is more detailed and called SoNARe-D. This version is enhanced in the
sense that it includes more data from the actual case study (e.g. an elicited network structure
and an additional farmer type) and is thus more evidence-driven than the abstract version. In
addition, it attempts to more closely capture the symbolic/qualitative nature of agents’
decision-making and differentiates a set of social influencing factors.
In the following, the term SoNARe (without –A or –D postfix) refers to common
documentation of both models.
Technically, the SoNARe core model is a hybrid model. The modelling infrastructure
(scheduling, data logging, visualisation, etc) is provided by the RePast agent programming
framework (Recursive Porous Agent Simulation Toolkit, cf. North et al 2006). The cognitive
control structure and decision making of farmers and WPI actors may be modelled using
production rules implemented in JESS (the Java Expert System Shell;
http://herzberg.ca.sandia.gov/jess/), and JESS’s reasoning engine. It opens the possibility to
provide Repast agents with cognitively plausible capabilities. Furthermore, the RePast portion
of the model provides the necessary functionality to interface with the sub-models SHAM and
SAEM. Figure 1 illustrates the technical model architecture.

 2

Figure 1: Overview of the integrated model architecture. The integration of Jess and a Jess rule-base is
optional. Currently, decision-making is performed procedurally in Java. In the SoNARe-D model the
basic architecture is extended to include the economic model SAEM.

1.1 Class Structure
The following UML class diagrams show the main classes of SoNARe-A/SoNARe-D, their
relationships and their relationships to the interfaces of the submodels SHAM and SAEM.

 3

Model

SimModelImpl
uchicago.src.sim.engine

ModelBatch

ModelGUI

Model
sham.logic

AbstractStatistics

FarmerPopulationStatisticsFarmerIndividualStatistics

Economics

WPI

SocialAgent

Agent

Drawable
uchicago.src.sim.gui

«interface»

Farmer

NetworkNode
network

Parcel
sham.logic

«interface»

Memory

Node
de.uni_kassel.usf.network

DefaultDrawableNode
uchicago.src.sim.network

DefaultNode
uchicago.src.sim.network

LRSINITIATOR
DEPENDENCY
ACQUAINTANCE

NetworkSemantics
network

«enumeration»

 # biophysicalModel*

 # farmerPopulationStatistics
0..1

 # farmerIndividualStatistics*

 # wpi
0..1

 - agent

0..1

 # economics 0..1 # parcel

0..1

 # lRSSuccessMemory 0..1 # plantingSuccessMemory0..1

 - semantics0..1

 # economics0..1

Figure 2: Diagram of the main classes of SoNARe-A and their relationships.

 4

Model

SimModelImpl
uchicago.src.sim.engine

SimModel
uchicago.src.sim.engine

«interface»

Model
saem.logic

Model
sham.logic

FarmerIndividualStatistics
statistics

FarmerPopulationStatistics
statistics

AbstractStatistics
de.uni_kassel.usf.statistics

Descriptive
cern.jet.stat

ParcelRegistry

Farmer

SocialAgent

Agent

DecisionMaker
«interface» Drawable

uchicago.src.sim.gui

«interface»

Parcel
saem.logic

«interface»

EndorsementSystem
de.uni_kassel.usf.endorsement

Endorsement>
de.uni_kassel.usf.memory.Memory<de.uni_kassel.usf.endorsement

Integer extends Number>
de.uni_kassel.usf.memory.Memory<java.lang

NetworkNode
network

EndorsementScheme
de.uni_kassel.usf.endorsement

Memory <Item>
de.uni_kassel.usf.memory

OverallEndorsementFunction
de.uni_kassel.usf.endorsement

ACQUAINTANCE: String
DEPENDENCY: String
SAME_CHANNEL: String

NetworkSemantics

BETTER_OFF: String
MAINTENANCE: String
SIMILARITY: String

EndorsementSemantics
endorsement

 # economicModel

0..1

 # biophysicalModels

*

 - model

1

 + farmerIndividualStatistics

*

 - model1

 + farmerPopulationStatistics

1

 ~ model 1

 + parcelRegistry

0..1 parcel

 ~ parcels2farmers

1

farmer

 ~ farmers2parcels*

 ~ endorsementSystem1

 # agentEndorsementMemory1

 # bigLossesMemory

0..1
getSemantics

 - networks*

 # maintenanceEndorsementMemory1

semantics

 ~ schemes 1

semantics

 ~ memories1

semantics

 ~ functions1

 - agent

0..1

Figure 3: Diagram of the main classes of SoNARe-D and their relationships.

 5

1.2 Required libraries

The SoNARe model requires the following packages:

• colt.jar
• jchart2d-2.1.0.jar
• jess.jar
• jmf.jar
• log4j-1.2.15.jar
• plot.jar
• repast.jar
• sham-0.3.1.jar
• trove.jar
• violinstrings-1.0.2.jar

2 User Guide

2.1 Model Parameters (SoNARe-A)
The following table summarises the parameters of SoNARe-A and their default values.

Environment
numberOfParcels 10 • Number of parcels per channel

• Parcels have uniform size.
numberOfChannels 10 • Number of parallel channels, assumed to be

hydrologically independent.
weatherSequence N N W • Fixed sequence Normal-Normal-Wet

stoppingTime 100 • Number of simulation years
configPath sham_scenarios/ • Configuration path of SHAM
dataLoggingPath • File system location where log files are dumped

Agents
decisionBiasFarmers • Sets the common balancing of farmer decision making

between economic success and social support perceived.
• Values above 0.5 stress the economic influence on decision

making, values below 0.5 stress the social dimension.
• Reference settings for the decision scenarios are

o Selfish Scenario, set to 1.0
o Social Scenario, set to 0.5

productionCost 8.0 • Investment in farming activities (excluding LRS) per year
• Value was estimated in relation to the maximum attainable

yield (market price is 10 units)
• Maximum possible profit is 20% (=2 units) of the market

price of the maximum yield on a parcel
costLRS • Amount (or work equivalent) per year that has to be invested

in the LRS if it is maintained
profitThresholdFarmers • If a farmer’s profit in a year drops below

profitThresholdFarmers then the profit (of that year)
is considered “too low” otherwise “ok”

maxCompensation 2.5 • Maximum value of compensation that may be paid to an
individual farmer

compensationPolicy 0 • Compensation Policy
warmUpYears 10 • Number of years before compensation policy takes effect

 6

minRetentionTimeFarmers 3
maxRetentionTimeFarmers 7
memRngSeed

• Farmers memorise whether their past profits were “too low”
or “ok” with respect to profitThresholdFarmers.

• Memory tokens are memorised with a retention time in years
that is fixed per farmer agent

• Memory tokens are triples of profit, LRS strategy, and
retention time.

• E.g. if agent A has a retention of 5 years then a memorised
profit will persist for 5 years and after that be removed from
the memory.

• When evaluating an LRS strategy farmers consult the
relevant tokens stored in their memory.

• Individual retention times are distributed heterogeneously
among agents

• retention times are assigned to farmers from a uniform
random distribution from
[minRetentionTimeFarmers,
maxRetentionTimeFarmers]

• random seed is set to memRngSeed
networkType WS

avgAcquaintancesDegree 10
RandomSeed

• Watts-Strogatz network, small world network (ring substrate)
generated by the RePast network factory

• rewiringProbability=0.1
• connectRadius= avgAcquaintancesDegree / 2
• RandomSeed is the seed of the RNG that is used for the

random rewiring
bigLossesThreshold
wpiActivationThreshold
relativeSocialInfluenceWP
I

• The WPI agent has social network links to all farmer agents.
• At the end of a simulation year the WPI observes the profit of

each farmer and counts those farmers whose profit has
dropped below bigLossesThreshold

• The WPI keeps a track of these counts over the past 6 years,
if the average of this track rises above
wpiActivationThreshold then the WPI becomes
active and exerts social influence. In all other cases the WPI
is passive.

2.2 Running the model from the Repast GUI (SoNARe-A)
The ModelGUI class of the SoNARe-A model comes with a number of different visualisations.
The performance diagrams show yearly values of various model indicators. The performance
indicators are defined in the FarmerPopulationStatistics class and in the
FarmerIndividualStatistics class. All performance diagrams display data provided by these
classes.
As an example, the left hand side of the screen shot below (Figure 4) shows a visualisation of
100 land parcels along ten channels of the LRS (green lines) where red parcels have a
neglected LRS, blue ones are maintained. On the right hand side three selected performance
diagrams are shown.

 7

Figure 4: Sample screenshot of some of the visualisations produced by the ModelGUI class of SoNARe-A.

The next screen shot (Figure 5) shows the two network visualisations produced by SoNARe-
A. E.g. the window in the foreground shows the acquaintances network where nodes belong
to individual farmers. The colour of the nodes corresponds to their respective LRS strategy
and the size of the nodes increases with social success.

 8

Figure 5: Sample screenshot of some of the visualisations produced by the ModelGUI class of SoNARe-A.

2.3 Running the model in batch mode (SoNARe-A)
The SoNARe-A model may also be run in a silent batch mode which works without the GUI
and only writes log files with the simulation results for later offline examination, e.g. to
perform sensitivity analyses. This is done by invoking the ModelBatch class of SoNARe-A
from the command line as follows:

java -cp
lib/sonare.jar:lib/repast.jar:lib/jess.jar:lib/colt.jar:lib/trove.jar:lib/viol
instrings-1.0.2.jar:lib/plot.jar:lib/sham-0.2.5.jar
uchicago.src.sim.engine.SimInit -b de.uni_kassel.usf.sonare.ModelBatch
parms/test.pf

This assumes that there is a lib directory including all required libraries and a model
parameter file test.pf stored in the parms directory. The parameter file may contain any of
the model parameters documented above. In addition, ranges for the parameters may be
specified — a full description of the parameter file syntax can be found in the RePast
documentation.
An excerpt of a sample parameter file that was used for a sensitivity analysis of the SoNARe-
A model is given below:

runs: 1
MaxCompensation {
 set: 2.5
}
CompensationPolicy {
 set_list: 0 1 2 3 4
}
warmUpYears {
 set: 10
}

 9

DecisionBiasFarmers {
 set: 0.5
}

...

DataLoggingPath {
 set_string: n:/data/simResults/model_v1/policy/
}
ConfigPath {
 set_string: sham_scenarios/
}
ConfigFile {
 set_string: 2normal1wet.cfg
}
PrintAgentStats {
 set_boolean: false
}
StopAtTick {
 set: 120
}

2.4 Model Parameters (SoNARe-D)

Environment
numberOfParcelsPerChannel 10 • Parcels have uniform size.
numberOfBigFarmers 10
numberOfSmallFarmers 100
numberOfFarmerWPIs 0 • The number of farmers to also act as

WPIs. If x is the value set for this
variable, then those x farmers will
become WPIs who have the x highest
number of acquaintances network
edges/links. These WPIs will,
however, not be connected to all other
farmers.

numberOfNonFarmerWPIs 1 • The number of additional (non-
farmer) agents to act as WPIs. Each
non-farmer WPI will be connected to
all farmers via the acquaintances
network.

numberWillingAmongstSmallFarmers 0 • The number of willing small farmers.
Willing farmers are assigned a
maintenance endorsement scheme that
includes the “WPIExertsInfluence”
token with a positive endorsement
value (see also
willingnessToMaintain).

bigFarmerParcelThreshold 10 • If a farmer agent owns at least as
many parcels as this threshold
indicates, it is considered to be a big
farmer. Currently, all big farmers own
exactly this number of parcels.
However, an acreage allocation
algorithm is implemented in the
model which allows to randomly
determine the number of parcels
individual farmers are assigned.

farmer2ParcelDistributionMode RANDOM_
MAINTAIN_
CONNECTE
DNESS

• Determines the mode by which
farmers are assigned their parcels.

• If set to DEFAULT, the allocation is
performed in the order of farmers IDs
and each farmer will be assigned the
next X number of parcels along the

 10

current channel (or if X is great, the
current and subsequent channels) with
X being the total number of parcels
the farmer is to own.

• If set to RANDOM, allocation is
performed at random; a uniform
random distribution is used and
seeded with distRngSeed.

• If set to
RANDOM_MAINTAIN_CONNECT
EDNESS, the next farmer to be
assigned its parcels is determined
from a uniform random distribution
(see above) which is seeded with
distRngSeed and this farmer will
be assigned the next X number of
parcels along the current channel (or
if X is great, the current and
subsequent channels) with X being the
total number of parcels the farmer is
to own.

distRngSeed 1 • see above
stopAfterYear 114 • The simulated year after which to stop

the simulation.
water level sequence to be fed into the top parcel of a
channel

historical
water level
sequence

• The data represent an average
monthly water balance measured in
Wroclaw in the period between 1947
and 2003. It was provided as part of
SHAM by the project member
Grzegorz Holdys, Wroclaw
University of Technology.

dataLoggingPath • File system location where log
files are dumped.

shamSaemConfigPath config/sham_
saem/

• File system path to where the
configuration files for SHAM/SAEM
are located.

parmsPath config/parms • File system path to where the (Repast)
configuration file for SoNARe is
located.

Agents
networkType OdraTrimmed • The type of network topology to be

used for the acquaintances network.
OdraTrimmed is the network topology
extracted from case study evidence
(N=74) which is scaled up or down
depending on the number of small
farmers.

randomRewiringProportion 0.0 • The proportion of edges to be
randomly rewired for each node that
is newly generated by the scaling
algorithm applied to the
OdraTrimmed network.

lossToleranceFraction 0.9 • If a farmer’s current profit falls below
this fraction of the mean profit using
the current maintenance strategy, it
will regard it as a big loss.

wpiBigLossesMemoryDefaultRetentionTime 10 • A WPI gets active and remains active
as long as the mean number of the
small farmers (i.e. those it is
acquainted with) with big losses over
the past
wpiBigLossesMemoryDefault
RetentionTime number of years is
greater than
wpiActivationThreshold

 11

wpiActivationThreshold 10 • see above
mediumYearsMemorised (profit memory) 10 • Profits are memorised with a retention

time in years that is fixed per farmer
agent

• E.g. if agent A has a retention of 5
years then a memorised profit will
persist for 5 years and after that be
removed from the memory.

• When evaluating an LRS strategy
farmers consult the relevant profits
stored in their memory.

• Individual retention times are
distributed heterogeneously among
agents

• Retention times are assigned to
farmers from a normal random
distribution from
[mediumYearsMemorised-
radiusYearsMemorised,
mediumYearsMemorised+radi
usYearsMemorised]

• random seed is set to memRngSeed.
radiusYearsMemorised (profit memory) 0 • see above
memRngSeed 1 • see above
agentEndorsementMemoryCapacity -1 (unlimited) • The default capacity set for each small

farmer.
• The retention mechanism for the

memory that stores an agent’s
endorsements of other agents in the
social network is determined by that
memory’s capacity and its retention
time.

• If the capacity is set to a negative
value (= unlimited capacity), then an
endorsement is stored for the number
of years defined by the memory’s
rentention time.

• If the capacity is set to 0 or a positive
value, then an endorsement is stored
for the number of years defined by the
memory’s rentention time unless the
capacity is reached first.

• In case the capacity of the memory is
reached, the addition of a new
endorsement will result in the removal
of another endorsement according to
the FIFO rule.

agentEndorsementMemoryDefaultRetention
Time

10 • see above

maintenanceEndorsementMemoryCapacity -1 (unlimited) • Analogous to the above, but applying
to the agent’s memory for
maintenance option endorsements.

maintenanceEndorsementMemoryDefaultRet
entionTime

10 • see above

willingnessToMaintain 1 • Each willing small farmer is assigned
this endorsement value for the token
“WPIExertsInfluence” in its
maintenance endorsement scheme.

2.5 Running model from the Repast GUI (SoNARe-D)
The ModelGUI class of the SoNARe-D model comes with a number of different visualisations.
The performance diagrams show yearly values of various model indicators. As in the
SoNARe-A model version, the performance indicators are defined in the model-specific

 12

FarmerPopulationStatistics class and in the FarmerIndividualStatistics class. All
performance diagrams display data provided by these classes.
The left hand side of the screen shot below (Figure 6) shows (part of) the visualisation of 200
land parcels along twenty channels of the LRS (green lines) where red and blue parcels
represent small farmers who have a neglected LRS or a maintained LRS, respectively. The
grey parcels indicate big farmers who always maintain their LRS. On the right hand side four
representative performance diagrams are shown.
Figure 7, in the bottom right corner features a screenshot of a network visualisation produced
by SoNARe-D. It shows the acquaintances network where nodes belong to individual farmers.
Again, the colour of the nodes corresponds to their respective LRS strategy/agent type and the
size of the nodes increases with the attained individual profit.

Figure 6: Sample screenshot of some of the visualisations produced by the ModelGUI class of SoNARe-D.

 13

Figure 7: Sample screenshot of some of the visualisations produced by the ModelGUI class of SoNARe-D.

2.6 Running the model in batch mode (SoNARe-D)
SoNARe-D may also be run in a silent batch mode which works without the GUI and only
writes log files with the simulation results for later offline examination, e.g. to perform
sensitivity analyses. This is done by invoking the ModelBatch class of SoNARe-D from the
command line as follows:

java -cp
lib/sonare5.jar:lib/sham0.3.1.jar:lib/repast.jar:lib/jess.jar:lib/colt.jar:li
b/trove.jar:lib/violinstrings1.0.2.jar:lib/plot.jar:lib/beanbowl.jar:lib/log4
j-1.2.15.jar
uchicago.src.sim.engine.SimInit -b de.uni_kassel.usf.sonare.ModelBatch
config/parms/test.pf

This assumes that there is a lib directory including all required libraries and a model
parameter file test.pf stored in the config/parms directory. The parameter file may contain
any of the model parameters documented above. In addition, ranges for the parameters may
be specified — a full description of the parameter file syntax can be found in the RePast
documentation.
An excerpt of a sample parameter file that was used for a sensitivity analysis of the SoNARe-
D model is given below:

runs: 1

 14

NumberWillingAmongstSmallFarmers {
 start: 0
 end: 100
 incr: 25
 {
 runs: 1
 DistRngSeed {
 start: 1
 end: 10
 incr: 1
 {
 runs: 1
 RngSeed {
 start: 1
 end: 3
 incr: 1
 }
 }
 }
 }
}
StopAfterYear {
 set: 114
}
NumberOfBigFarmers {
 set: 10
}
NumberOfSmallFarmers {
 set: 100
}
BigFarmerParcelThreshold {
 set: 10
}

...

LossToleranceFraction {
 set: 0.9
}
...

DataLoggingPath {
 set_string: n:/data/simResults/model_v2/endorsementSchemes/
}

2.7 Model Output
As for the visualisations in the ModelGUI class the ModelBatch class dumps all model
performance indicators defined in the FarmerPopulationStatistics class and in the
FarmerIndividualStatistics class for each time step in a tabular format to a log file, as
indicated below for an example population file.

Timestamp: Apr 16, 2008 10:11:16 AM
{The values of the fixed model parameters are printed here}

"run" "tick" "RngSeed" "DistRngSeed" "WpiActivationThreshold" ...
 1 12.0 1 1 3 ...

...

...

{The values of the fixed submodel parameters (SHAM/SAEM) are printed here}
End Time: Apr 16, 2008 12:35:53 PM

 15

If selected for output in the Model class, the files population.txt and individuals.txt
written, the former containing selected statistical values for the whole population (for each
run and each simulated year), the latter containing selected statistical values for each
individual agent (for each run and each simulated year). Since both these files are produced
by subclasses of the AbstractStatistics class, it is possible to utilise its generic selective
output configuration mechanism, i.e. one may selectively annotated those variables with the
@Output annotation which one wants to have calculated and written to the files.

3 References

North, M.J., Collier, N.T. and Vos, J.R. (2006). Experiences Creating Three Implementations
of the Repast Agent Modeling Toolkit, ACM Transactions on Modeling and Computer
Simulation, Vol. 16, Issue 1, pp. 1-25, ACM, New York, New York, USA.

