
Technical documentation of the declarative model

for the South African case study
Ruth Meyer

1 Model Implementation

The declarative model is implemented in Java and Jess. It relies on the Repast library for the

simulation infrastructure. The following UML class diagram shows the main classes and

relationships. Repast classes are displayed in orange, Jess classes in grey.

Figure 1: UML class diagram

The model logic is divided between Java and Jess. Cognition and decision processes of

agents are represented (as much as possible) as rules in Jess. More procedural processes are

implemented in Java. During the model development it was necessary to find a balance

between the expressiveness of declarative modelling in Jess and the faster execution of Java

code. Our solution has been to strive to reduce both the number of rules and the number of

facts by the following measures:

1. Several rules did not deal explicitly with decision processes but were more or less

procedural in nature; e.g. updating the households’ cash or evolving tags. These were

all ported to Java. Since some of them need to have access to the currently existing

facts we implemented a Java class (FactBaseScourer) that browses through the fact

base once per time step and delivers the necessary facts to the respective methods.

2. Whenever suitable, we replaced explicit facts with corresponding fields in Java

classes acting as shadow facts in Jess. For example, facts keeping record of household

economy (monthly-food-cost, expected-income, cash-in-hand) were replaced by fields

in the Household class (monthlyFoodCost, expectedIncome, cash) and updated from

Java. Rules in Jess can access these fields as slots in the shadow fact.

This works not only for single-valued fields but for lists of values, too. The known-

person facts keeping track of which persons a particular individual is acquainted with

could thus be replaced with a knownPerson field in the Person class, which acts as a

multi-slot from Jess. Instead of looking for the existence of a known-person fact, the

respective rules now test if the person in question is a member of the knownPersons

multi-slot. This has proven to be much faster.

3. Reducing the number of facts in Jess’ memory by removing facts when they are no

longer needed. For this we devised a class DisposalPolicy, which keeps track of

which type of fact can be removed after how many ticks. To be able to be removed

with a disposal policy, a fact needs to possess a slot with a time stamp, denoting its

assertion time. The modeller can then specify when to remove such a fact by calling

the addPolicy() method with the fact header, name of the time stamped slot and the

wanted time lag as parameters. If no time stamped slot is specified, the default

timeStamp is assumed. The disposal policy is executed at the end of every model step

after running the Jess engine, ensuring that a time lag of 0 results in immediate

removal.

For dealing with dynamic endorsements a specialisation of Disposal Policy has been

implemented. The class EndorsementDisposalPolicy allows for the removal of

endorsements by specifying the endorsement token (e.g. is-similar) and the time lag.

All endorsement facts possess the default timeStamp slot.

4. Supplying Jess with direct access to model functionality by implementing user

functions instead of relying on calls on the model object. This concerns the Jess user

functions (current-tick) and (dump). The former retrieves the current model tick while

the latter “dumps” the text passed as parameter on the console. The dump function

invokes the method of the same name on the model class. Since this method only

prints to the console if the respective model parameter showOutput is set to true, this

ensures that both Jess- and Java-generated model output can be toggled via the

parameter. In addition, replacing the in-built Jess output function (printout t) with

faster output in Java achieves a speed-up.
1

Together, the two user functions allow for the model shadow fact to be removed from

the left hand side of the majority of rules, resulting in a faster Jess execution as the

complete Rete network doesn’t have to be rebuilt every model tick.

In each step of the simulation, the FactBaseScourer is run before the Jess engine, so that

1
 With version 7 Jess provides direct access to Java’s console output via ((System.out) println), so a mere speed-

up could also have been achieved this way.

all facts are updated. After the Jess run, the DisposalPolicy is applied to remove all facts that

fit the defined policies.

Unfortunately, the model still doesn’t scale up very well. The runtime seems to increase

exponentially. While it runs fast enough for 24 households, taking several hours to complete

1200 ticks, doubling the number of households (50) increases the run time to 3 days for only

about 250 ticks. And that in batch mode without GUI or output to console.

2 User Guide

2.1 Model Parameters

As is common with detailed agent-based models of this kind, the declarative model has quite

a few parameters. The following table shows the model’s parameters and their default values.

Parameter Default value Description

Village/household level

numHouseholds 24 number of initial households

numVillages 1 number of villages

numDenominations 4 number of church denomination

churchParticipation

Rate

0.8 proportion of households being member of a

church

adultEmploymentRate 0.4 proportion of adults with a job

government

EmploymentRate

0.1 proportion of adults with a government job

standardWage 200 monthly wage within village in Rand

childGrant 200.0 monthly child grant for children of eligible age in

Rand

childGrantProportion 1.0 proportion of eligible children receiving the child

grant

childGrantAgeLimit 7 upper age limit for child grant

statePension 870.0 monthly state pension for seniors

pensionProportion

Female

0.58 proportion of eligible female seniors receiving a

pension

pensionProportion

Male

0.5 proportion of eligible male seniors receiving a

pension

pensionAgeLimit

Female

60 lower age limit for female seniors to receive a

state pension

pensionAgeLimitMale 65 lower age limit for male seniors to receive a state

pension

foodCostChild 25.0 monthly food cost for a child up to 7 years in

Rand

foodCostFemaleAdult 100 monthly food cost for a female in Rand

foodCostMaleAdult 120 monthly food cost for a male in Rand

Parameter Default value Description

schoolFee 200 yearly school fee for non-compulsory secondary

school (pupils > 15 years) in Rand

collegeFee 10000 yearly university fees in Rand

minLobola 8000 minimum lobola (bride price) in Rand

maxLobola 12000 maximum lobola (bride price) in Rand

minRemittance 200 minimum remittance from a migrant agent in

Rand

maxRemittance 600 maximum remittance from a migrant agent in

Rand

remittanceProbability 0.1 probability for sending remittance home for any

migrant in any month

burialCost 5000 average cost of a burial in Rand

shackProportion 0.4 proportion of households in the village with a

shack to rent out if necessary

minShackRent 200 lower limit for the monthly rent asked for a shack

in the village

maxShackRent 500 upper limit for the monthly rent asked for a shack

in the village

houseCost 2000 average cost of a new house in a village in Rand

motherChildHIV

TransmissionRate

0.33 mother-to-child transmission rate of HIV

birthRate 19.0 birth rate as number of births per 1000 per year

Individual level

tagLength 7 number of tags used to model agents'

characteristic traits

tagBase 5 number of different values a tag can take

(integers between 0 and tagBase - 1)

maxTagEvolution

Propensity

0.08 maximal tag evolution propensity

minTagEvolution

Propensity

0.01 minimal tag evolution propensity; every agent is

assigned a random tag evolution propensity

between max and min

minEndorsementBase 1.0 minimum value for the base used to compute the

overall endorsement value

maxEndorsementBase 3.0 maximum value for the base used to compute the

overall endorsement value; every agent is

assigned a random base between min and max

minEndorsement

Classes

2 minimum number of endorsement classes

maxEndorsement

Classes

5 maximum number of endorsement classes; every

agent is assigned a random number of classes

between min and max

upperMaxNumFriends 12 upper limit for the maximal number of friends

lowerMaxNumFriends 6 lower limit for the maximal number of friends;

Parameter Default value Description

every agent is assigned a random maximal

number of friends between upper and lower limit

upperMaxNum

Partners

5 upper limit for the maximal number of concurrent

sexual partners

lowerMaxNum

Partners

1 lower limit for the maximal number of concurrent

sexual partners; every agent is assigned a random

maximal number of partners between upper and

lower limit

similarityAgeRange 0.25 age range for similarity assessment (basically, age

range for friends) given as proportion of age of

the agent (e.g. age range is ± 25% of own age)

randomPartner

Probability

0.1 probability to encounter a random sexual partner

Mining related

miningTick 240 tick to start mining in the area. Set to -1 to not

have any mines

neededSkilled 20 number of skilled workers needed for the mine

neededUnskilled 80 number of unskilled workers needed for the mine

mineHIVPrevalence 0.3 HIV prevalence amongst in-migrating mine

workers

interArrivalTime 10 mean inter-arrival time (in ticks) for in-migrating

mine workers

meanNumArrived 5 mean number of in-migrants arriving in the area

at one time

sdNumArrived 2 standard deviation of the number of in-migrants

meanAgeArrived 29 mean age of in-migrants

sdAgeArrived 7 standard deviation of the age of in-migrants

Spatial environment related

gridSizeX, gridSizeY 30 size of the 2D grid used as spatial model

neighbourhoodRadius 4.24 radius used to determine neighbourhood of a

household

densityFactor 1.3 density factor, determines how "packed" villages

are with houses

Simulation run related

showGUI false flag to turn the GUI on (true) or off (false)

printToFile true flag to turn the output to file on (true) or off

(false)

showOutput true flag to turn the output to console on (true) or off

(false)

outputPath /data/experiments/

southAfricaModel/

Path for the output directory.

seed 12345 seed for the random number generators

stopTime 2400 (50 years) tick to stop the simulation run

2.2 Running the model from the Repast GUI

Since the model is using Repast for its simulation infrastructure, simulation runs can be

started from the Repast GUI. Invoking the main() method of the model class

(org.cpfm.caves.za.SouthAfricaModel) will bring up the Repast GUI (see screenshot). You

can set parameters and start, pause or stop simulation runs from there.

Figure 2: Screenshot of the model with GUI

It is strongly recommended to provide the Java Virtual Machine with as much memory as

possible. 512 MB are necessary to run the model with 24 households.

2.3 Running the model from console as a batch run

To save on time and memory it is possible to run the model from console. This is a so-called

batch run in Repast terminology and is started by invoking the Repast class SimInit with the

model class as parameter:

java uchicago.src.sim.engine.SimInit -b org.cfpm.caves.za.SouthAfricaModel

Make sure the classpath is set correctly. The model needs the following libraries:

• flanagan.jar

• jess.jar

• repast.jar

• colt.jar

To set parameters to values different from the default values a special parameter file is

needed. Please refer to the Repast documentation for details of the file format. The following

shows an example parameter file for one simulation run, 50 households, a seed of 12345 and

no output to console:

runs: 1

numHouseholds {

 set: 50

}

seed {

 set: 12345

}

showOutput {

 set_boolean: false

}

2.4 Model Output

The model produces output on several levels:

• GUI: friendship network and stokvel network (updated dynamically), kinship

network, space with households in villages; it is recommended to switch this off

(default).

• Console: model trace

• Files: complete model output. For each model run a folder is created in the specified

output directory (default: /data/experiments/southAfricaModel/) with a unique name

constructed out of the prefix “run-“ and the start time of the run in system

milliseconds (e.g. run-1205535622441).

The model trace is recorded in a file called trace.txt. Time series data like number of

agents, households, HIV-positive agents, households without enough food etc. on

either a weekly (per tick) or monthly (every 4
th

 tick) basis is written into the files

OutputWeekly.txt and OutputMonthly.txt, respectively. Data concerning deaths from

HIV is recorded separately in HIVDeaths. Each year (every 48
th

 tick) the age

distribution of the village population, separately for males and females, is recorded in

the file AgeDistribution.txt.

Every 10
th

 tick the friendship network is recorded in a separate network file in Pajek

format. The sexual network is currently recorded for every tick in one single file. A

utility to split this file into the separate Pajek network files is provided

(org.cfpm.caves.za.util.NetworkSplitter). Data about the duration of sexual

partnerships (excluding marriages) is collected in the file Partnerships.txt.

If the model is set to include mining relevant time series data (number of in-migrated

miners, number of employed unskilled workers, number of employed in-migrants,

number of HIV-positive in-migrants) is recorded in OutputWeekly.txt. Each

individual in-migrant is recorded in the file Mining.txt on leaving the area, noting

length of stay and reason for leaving (AIDS/no job).

In addition, several files containing data about the household economies are produced.

This is a left-over from debugging.

