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1 Social Networks Analysis (SNA)

1.1 Basic Definitions

Over several decades researchers have either used the social networks study
to investigate the patterns that emerge from the interaction among people
belonging to various kinds of networks, e.g. kinship, work, friendships etc;
or to identify the major actors or vertices in the network which influence
the structure of the network in a number of ways. It is important to note
that despite the fact that social networks research is described in terms of
the repertoire of the measures, it has a long history of qualitative research.
Social networks, may be regarded as important sub-discipline in the social
sciences in broader terms. Hence studies in social networks range from pure
qualitative research to development of sophisticated quantitative metrics that
capture the macro-properties of the underlying network.

In order to grasp a firm understanding of mathematical network theory we
will formulate some basic definitions in the first section. In the section after
that we will discuss various network measures and their applications. Net-
work measures are meant to be a tool through which we are able to analyze
networks efficiently. Most importantly they enable us to compare different
networks at a certain point of time or the development of the same network
over time.

Definition 1.1 A nondirected graph or a graph G is an ordered pair
G = (V, E), which fulfils the following conditions:

1. V is a set of vertices or nodes

2. E is a set of unordered pairs of different vertices, called edges. The
vertices u and v that belong to an edge e = {u, v} are called vertices of
the edge or start vertex and end vertex.
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V (and therefore E) are normally considered as finite sets and many well
known results are not true for infinite graphs. Therefore we define V to be a
finite set unless we declare it otherwise.

Definition 1.2 A directed graph is an ordered pair G = (V, A) with

1. a set V of vertices

2. a set A of ordered pairs of vertices, called arrows. An arrow a = (x, y)
is considered to be directed from x to y; y is called the head and x is
called the tail of the arrow.

Definition 1.3 A weighted graph G is a graph in which each edge is
associated with a specific value.

Definition 1.4 A Subgraph G = (V, E) of a graph H = (V ,́ É) is a graph
with V ⊆ V´and E ⊆ É.

Definition 1.5 Let G = (V, E) be a graph. A path P is a sequence of
vertices v1, . . . vk, such that for all i ∈ {1, 2 . . . , k − 1} the condition holds
that {vi, vi+1} ∈ E and vi 6= vj für 1 ≤ i < j ≤ k.
If at that the condition {vk, v1} ∈ E holds, this path is called a cycle.
A directed path is defined analogously to a path with the exception that a
directed path includes at least one arrow. An oriented path consists only
of arrows.
A minimal cycle is a cycle which chooses the shortest path in order to
arrive again at the start vertex.
The length of a path is defined as the number of edges that the path has to
traverse in order to go from the start vertex to the end vertex.
A weighted graph associates a weight to each edge of the graph. The weight
of a path in a weigthed graph is therefore the sum of all the weights of the
traversed edges.

Definition 1.6 A graph G = (V, E) is called connected if there is a path
from u to v, ∀ u, v ∈ V . A connected component of a graph is a sub-
graph in which all vertices are connected.
If the graph G is connected even after the removal of k−1 arbitrary vertices,
G is called k-connected. For a graph G to be k-connected there has to be
k disjoint path between any two vertices in the graph.
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A directed graph is called connected if there is a directed path from
any vertex to every other vertex. A directed graph is called weakly con-
nected if every vertex in the graph is connected with all the other vertices
by directed paths where the arrows are not necessarily directed in the right
direction.

Definition 1.7 Two vertices u and v are called neighbours if {u, v} ∈ E.
A Clique of a graph G = (V, E) is a set of pairwise neighbouring vertices.

Definition 1.8 Let G = (V, E) be a graph. The distance dG(u, v) between
two (not necessarily different) vertices u and v is the length of the shortest
path between them.

1.2 Summery of selected network measures

There are numerous network measure and indices that can be used to analyse
the efficiency of a network.
Among other applications they can be used to compare different networks at
a certain point of time or to analyse the evolution of a network to different
points of time.
Below we will present some network measures.

1. Degree: The degree of a vertex v is the number of edges that are
incident with v. A vertex of degree 0 is called isolated.

2. Clustering Coeffizient

The clustering coefficient is a measure for the magnitude of the
clustering in a graph. One distinguishes the local clustering coefficient
for a certain vertex of the graph and the global clustering coefficient of
the whole graph.
The local clustering coefficient of a vertex v in a graph G denotes
the ratio of the number of edges that are present between it’s direct
neighbours and the number of edges that could be present between it’s
neighbours.
The global clustering coefficient is the average of the local clustering
coefficients of all the vertices in the graph. Small-World networks have
a very high global clustering coefficient compared with the clustering
coefficient of a random graph, [1]. Scale-free networks have a small
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characteristic pathlength and a high clustering as well. But the clus-
tering in small-world networks is still more extreme than the clustering
in scale-free networks. At that the clustering coefficient of small-world
networks is independent of the size of the network, [3]. This feature is
found in totally ordered lattices as well. In contrast to small-world net-
works, the clustering coefficient of scale-free networks is dependent on
the size of the network. If the size of the network grows, the clustering
coefficient of scale-free networks converges to 0, [3].

3. Density: The density of a graph is the proportion of present edges to
possible edges in the graph. A graph in which every vertex is connected
with every other vertex is called complete. This graph has the maximal
possible density 1.

Definition 1.9 Formally that means for a graph G = (V, E) that the

global clustering coefficient can be calculated via |E|
M

mit M =

(
|V |
2

)

4. Characteristic pathlength The characteristic pathlength of a
graph is the average of the distance (the smallest pathlength) between
two arbitrary vertices in the graph.

5. Number of components A graph G = (V, E) ist divided in con-
nected components. If G consists of only one connected component the
graph G is called connected.

6. Number of cutpoints Cutpoints are central points in the sense that
they are the vertices that hold parts of the graph together that would
not be connected if it were not for these certain vertices. Therefore
they are the only vertices that have to be traversed by the paths from
one part of the graph to the other.
The concept of a cutpoint can be extended from one vertex to a set of
vertices. If a set M of vertices is necessary to hold a graph together,
then M is called a cutset. Analogously: Cutedge.

Theorem 1.1 A vertex w of a connected graph G = (V, E) with |V | ≥
3 is a cutpoint of G if and only if there exist vertices u and v, distinct
of w, such that w is on every path that goes from u to v.
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Theorem 1.2 An edge e = {u, v} of a connected graph G is a cutedge
if and only if e does not belong to a cycle of G.

7. Diameter and radius: The excentrity EG(v) of a vertex v in a
graph G = (V, E) is the maximal distance of v to another vertex in the
graph. (That means the maximum of the shortest pathlengths over all
vertices in the graph.) The diameter diam(G) of a graph G is the
maximal excentrity over all vertices of G and the radius of G, rad(G),
is the minimal excentrity. If there are two components in G one defines
diam(G) and rad(G) to be infinite. Vertices with maximal excentrity
are called peripheral vertices and vertices with minimal excentrity form
the "‘center"’ of the graph.

Theorem 1.3 A tree has at most two vertices that lie in the center.

The diameter enables us to measure the evolution of a network over
time. The bigger the diameter the less connected the network tends to
be. In the case of a complex graph one can calculate the diameter with
the help of a topological distance matrix, which calculates for every
pair of vertices the minimal topological distance.

(E.g.: The definition of the Shimbel distance matrix can be seen at:
http://people.hofstra.edu/geotrans/eng/ch1en/meth1en/shimbelmatrix.html)

8. Reachability/Connectivity A measure for the connectedness of
two vertices u and v in a network is the so called reachability or con-
nectivity. In this context u and v are called

(a) weakly connected if there is a path connecting them

(b) unilateral connected if there is a directed path from u to v OR a
directed path from v to u.

(c) strongly connected if there is a directed path from u to v AND a
directed path from v to u.

(d) recursively connected it they are strongly connected and the path
from u to v uses the same edges and arrows as the directed path
from v to u.

6



9. Centrality of certain vertices or of the whole network
An important application of social network theory is the identification
of "‘important"’ vertices in the network. There are a lot of different
ways to define an actor (a vertex) as important or central. More of-
ten than not, vertices who are important are distributed at strategic
important places in the network.

(a) A vertex v is called central if the degree of v is great in com-
parison with the other vertices of the network. We don’t make a
difference between incoming and outgoing edges at the moment.

(b) One can also consider the degree dependent centrality.
One problem with the consideration of degrees is that they are
dependent of the magnitude g = |V | of the network. The maximal
degree a vertex can achieve is g − 1. To standardize this measure
one can define a degree dependent centrality CA(v) = degree(v)

g−1
.

Then it is possible to compare the value CA(v) and therefore dif-
ferent vertices over networks of different magnitudes.
A similar measure is the ego-density where the degree of a ver-
tex is divided by the maximal possible number of edges this vertex
could possess. This measure is independent of the magnitude of
the network as well.

(c) One can expand the same concepts to a directed graph. Here one
talks of high prestige if a vertex has a lot of incoming edges
compared to the other vertices in the network. The prestige of a
vertex gets bigger if more arrows are pointing to it but normaly
it doesn’t change if it points new arrows to other vertices.

(d) One can consider the centrality of the whole network in the sense
that one can compare the centrality of all vertices in the network
and finds out if the centrality of the vertices is distributed evenly
or not. A star graph for example is an example for a graph where
one vertex is very central and all other vertices are not important
with regard to centrality.
Let CA(ni) be the degree dependent centrality (definition see un-
der (b) above) of the vertex ni. Furthermore let CA(n∗) be the
maximum of the degrees over all vertices of the network, that
means, CA(n∗) = maxiCA(ni), i ∈ {1, . . . , |V |}.
The sum of the differences between CA(n∗) and the centrality in-
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dices of the other vertices,
∑|V |

i=1 [CA(n∗)− CA(ni)] is a network
measure for the distribution of centrality of the vertices in the
whole network.

(e) A further point of view to define the centrality of a vertex is via
distance or closeness. The idea is that a vertex is central if
it can be in contact with all or many of the other vertices very
quickly.
For that purpose let d(ni, nj) be the number of edges of the short-
est path from the vertex ni to the vertex nj. The absolute dis-
tance that the vertex ni has from all other vertices is defined by∑|V |

j=1 d(ni, nj) with j 6= i.
As the centrality index of a vertex has to get smaller the greater
the pathlengths to all other vertices, one defines the closeness in-
dex as:

C(ni) =
[∑|V |

j=1 d(ni, nj)
∣∣∣−1

If the vertex ni is incident with all other vertices, that means if ni

thus has the greatest possible closeness, the value of C(ni) is (g−
1)−1. The minimal value approaches 0 asymptotically. The value
0 is assigned to a network if a vertex is not reachable by a path
from ni To make these values indepentend of the magnitude of
the network, one multiplies C(ni) with (g−1). Then the maximal
value is 1 and the minimal still 0:

SC(ni) = C(ni) ∗ (g − 1)

Summarized that means that a vertex ni with a standardized close-
ness value, SC(ni) of 1 is a vertex that is only one edge away from
any other vertex in the network, i.e. the middle vertex of a star-
graph. The nearer the standardized closeness value comes to 0
the farther away is the examined vertex from most of the other
vertices.

(f) One can also define a closeness measure for the whole network.
For that purpose one considers the standardised centrality index
SC(ni) for all vertices ni, i ∈ {1, . . . , |V |}
The group centrality index is defined as∑|V |

i=1 [SC(n∗)− SC(ni)],
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where SC(n∗) corresponds to the vertex with the greatest stan-
dardised centrality index.
It was shown in [5] that the maximal value of this formula is
[(|V | − 2)(|V | − 1)] (2 |V | − 3) so that the group centrality index
that is independent of network size is defined as

CC =
∑|V |

i=1
[SC(n∗)−SC(ni)]

[(|V |−2)(|V |−1)](2|V |−3)

This index is 1 if a vertex is incident to all other vertices and all
other vertices have pathlength 2 to every other vertex. This is
exactly the case of a star graph.

(g) Interactions between vertices are often dependent of other ver-
tices that are between them. In certain cirumstances the vertices
in-between can have influence on the vertices which would like to
get in contact with one another. See for example the definition of
cutpoints and cutedges.

Definition 1.10 Let G = (V, E) be a graph. A vertex v ∈ V is
called a cutpoint if the number of connected components in the
graph that contain v is fewer than the number of components in
the subgraph that results from deleting v from the graph. The set
of all cutpoints is called cutset.
A bridge or cutedge similary is an edge, such that the graph
containing this edge has fewer components than the subgraph that
is obtained after the edge is removed.

But cutpoints are not the only way one can look at a vertex as
being central in regard to inbetweenness. Vertices are regarded as
central if the probability that they are on the chosen path from
one vertex to another vertex is high.
If one would like to calculate the probability that a certain vertex
lies on the path between two other vertices one calculates at first
the probability that a certain path is chosen. Let v and w be
two vertices in the network. We consider all of the shortest paths
between them. If there are several shortest paths we assume that
any one of them is chosen with the same probability, e.g., to trans-
port information from v to w. Let pvw be the number of paths
between v and w with the shortest length. The probability that
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one of these paths will be used to get from v to w is then 1
pvw

.
One calculates then the probability that a certain vertex j lies
on the chosen path. Let pvw(j) be the number of shortest paths
between v and w that lead over j. The probability that a path
between v and w is chosen that leads over j is therefore pvw(j)

pvw
. (In

these calculations we always assumed that paths of equal lengths
were chosen with the same probability.)
The index of the measures of betweenness centrality of a vertex v
is then the sum over all calculated probabilities

CB(v) =
∑

j<k pjk(v)/pjk

for v 6= i, j.

This measure measures therefore how much a vertex
lies between other vertices. The minimum value is 0. This is
the case if the vertex v lies on none of the shortest paths between
any two vertices. The maximum value is (|V | − 1)(|V | − 2)/2,
which coincides with the number of pairs of vertices which do not
include v. The index reaches it’s maximum if the vertex v lies on
all shortest paths between any two vertices. The example for that
is again a star graph with v as vertex in the center.
As the index is again dependent of the magnitude of the network
we standardize as ususal:

SCB(ni) = CB(ni)/ [(|V | − 1)(|V | − 2)/2].

Standardized in this way the indes SCB now takes values between
0 and 1 and one can compare vertices from different networks.
The idea here is to define a vertex as central if he lies on the short-
est paths between many other vertices.
In [10] it is describe why edges that connect two highly intra-
connected clusters that are not connected otherwise are so espe-
cially interesting. They are the only bridge between those clusters
(see definiton of cutedge above). For further details see Granovet-
ters "‘The Strength of Weak Ties, A Network Theory Revisited"’,
[6].
The definition and inspection of betweeness centrality still goes
further, compare [9].
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Other than several indices like e.g. the closeness in-
dex one can utilize this index even if the network is
not connected. This is of course a big advantage and it leads
to the fact that this index is the index that is used most frequently
in social network analysis. Algorithms to find shortest paths and
count how many vertices are in the respective paths are available
and are for example implemented in UCINET.

Analogously one can define the group index of betweenness
centrality. This index allows to compare different networks
in relation to their respective heterogenity of betweenness. It is
defined as ∑|V |

i=1 [CB(n∗)− CB(ni)],

with CB(n∗) being the vertex with the biggest betweenness cen-
trality index for the set of vertices of one social network.
The maximal value of the measure is (|V | − 1)2(|V | − 2)/2, so
that the standardized index for betweenness centrality of a group
is defined as (compare [5])

CB =
2
∑|V |

i=1
[CB(n∗)−CB(ni)]

[(|V |−1)2(|V |−2)]
.

In the above cited reference is shown that the index has it’s min-
imal value 0 if all vertices have excactly the same betweenness
value.

The betweeness theory can still be extended. Different assump-
tions can lead to different results. One does not, for example, have
to consider each path to be chosen with the same probabilty and
one could also consider other paths than just the shortest.
At that we did not go into much detail in the theorie of directed
networks. Many of the above mentioned measures can be used by
directed graph or can be defined analogously.

10. The structural balance theory is based on the studies of Fritz
Heider concerning the perception of social situations. It was extended
with the analysis how the opinion and attitude of a single person fits
or does not fit together with the opinions and attitudes of persons
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in a group. In doing so edges between persons get the weight + or
- according to the consensus between them. A group is defined to
be structural balanced if for every two vertices whose edges are both
weighted with + agree in the evalution of all other vertices. If e.g. two
persons like each other (+) then they should evaluate all other actors
(vertices) in the same way. It can be shown that the vertices in a
structural balanced graph can be divided into two subgroups in such a
way that all edges between them are either all positive or all negative.
Structural balance was used in many application for example in the
examination of international connections. For further details see [9]
chapter 6.

11. Especially interesting in network theory is the identification of co-
hesive subgroups in a network. That means subgroups of ver-
tices/actors between whom there are relatively strong, direct or positve
ties/edges. As an first example one could remember the definition of a
clique, but one easily understands that this definition is of low impact
for real world applications as there are nearly no cliques in any real
networks.
A possibility to define a cohesive subgroup is the n-clique. A n-clique
is a subgroup of vertices between there is a path of length ≤ n.
But n-cliques have two big disadvantages: First of all, the diameter
of the subgraph of a n-clique can be greater than n and secondly the
n-clique does not have to be connected. These problems arise because
there was no requirement in the definition for the path between two
vertices to use only vertices that are part of the n-clique. Therefore
a path could be used that is partly outside the n-clique and so possi-
bly raises the diameter of the n-clique. Under special circumstances it
could then happen that the n-clique is not even connected. Therefore,
n-cliques are not as cohesive as we would like them to be.
This problem is solved with the definition of n-clans and n-clubs. An
n-clan is a subgraph where all n-cliques of a graph are identified and
then those are thrown out which have a diameter greater than n. The
collection of the remaining subgraphs is called n-clan.
An n-club is an n-clique in which the shortest pathlength between any
two vertices has to be smaller than n for a path that is entirely inside
the subgraph.
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12. Alpha index α: Let G = (V, E) be a connected graph. Another
measure for the magnitude of connectivity inside the graph G is the
α-index, who divides the number of minimal cycles in a graph through
the number of maximal possible minimal cycles. The greater the alpha
index the more interwoven is the network. Trees have an alpha index
of 0. The value 1 stands for a completely connected network, a clique.
This index is interesting because it measures the degree of connectivity
independently of the number of vertices in the graph.
The following formular holds:

α = C
2|V |−5

,

where C is defined as the number of minimal cycles in the graph. In
the following figure one can see four networks with their respective α-
indeces:
Network A has α index 0

Network B has α index 1
3

Network C has α index 2
3

Network D has α index 1

2 Possibilities of calculations with matrices
A possibility to visualize a network is the construction of a sociomatrix or
adjacency matrix. This matrix indicates if two vertices are neighbours
or not. There is a row and a column for each vertex of the network. The
entry in the matrix is 1 if there is an edge between these two vertices and
0 otherwise. In a directed or weighted graph the entries are a bit different.
In a weighted graph the entry is the weight of the respective edge and in a
directed graph there is an entry 1 in the field xvw if and only if an arrow is
directed from v to w.
Sociamatrices in nondirected semantic relationships are symmetrical.
In order to analyze networks one can use some basic matrix operations: One
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Figure 1: Four networks with their respective α-indices

can build the transpose, the inverse of a matrix, one can add, subtract and
multiply...
E.g. matrixmultiplication can be used to calculate paths and reachability in
networks, compare [9], chaper 4
The shortest pathlength between two vertices can be calculated with the
multiplication of the sociomatrix with itself, compare [9] (chapter 4, pages
160-163).
The degree of a vertex can be calculated with the sociomatrix as well. The
degree is equal to the sum of a column or the row of the respective vertex.
That means:

degree (ni) =
∑|V |

j=1 xij.

Analogously one can identify the degree of incoming and outgoing edges. [9]
(chapter 4, pages 161-162).
The density of a graph can be calculated as the sum of all entries of the
matrix, divided by the possible number of entries:

Density(G) =

∑|V |
i=1

∗
∑|V |

j=1
xij

|V |(|V |−1)
.

For further details see [7] and [9].
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