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1 The Generalization Framework

Diversity of issues and modeling paradigms do not allow for a direct generalization of the
models built for CAVES case studies. Instead, we propose to investigate abstract represen-
tations (concepts) of certain aspects of CAVES case studies models. Then we can introduce
measures related to these representations and compare the same set measures over all case
studies models.

We assume that agents' behavior is constructed based on her/his perception of variety of
in�uences, which can be classi�ed as individual, interpersonal and environmental factors (see
Figure 1).

Figure 1: Modeling agents' behavior

Based on the in�uence categories introduced in Figure 2 we can conceptualize a set of agents
linked in social networks interacting with other agents and their environment. Certain features
of the detailed case studies models can be re�ected in the following abstract representations
(see Figure 2):

• agents
Agents constitute nodes in social networks. Their states can be represented through the
set of variables and parameters.
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• agents' choices (decisions, strategies)
In this framework we focus only on choice decisions which often can be a choice of the
speci�c strategy. The choice of an agent can be in�uenced by his own state, the state
of other agents linked with him in a social network and environment. Agents decisions
can lead to modi�cations of his social network and/or environment.

• links between agents
Agents can be linked with other agents with one or more connections. Di�erent types
of connections can be named and conceptualized as network layers. Di�erent layers can
be used in di�erent decisions.

• groups - agents a�liations
Agents can belong to one or more groups which can in�uence the shape of social net-
work(s).

• environment
Environment can be represented through a set of environmental variables and parame-
ters, some of them can be spatially explicit.

• system's interactions
Two-way interactions between agents, network and environment de�ne the system dy-
namics. However in some models only some interaction types can be present. For ex-
ample in some models a network can be static so it is not in�uenced by agents' choices.
The interactions listed in Figure 2 provide a full set of possibilities in the generalization
framework.

Figure 2: CAVES generalization framework
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2 Complexity Measures - Introduction

The basic distinction in complexity measures as applied to the above framework, lies in the
focus of analysis - it can be network based or agent-based. As a modeled system evolves we
can trace how the measures change in time.

Network analysis has a long history and many of the developed network metrics such as
average path length or degree centrality can be used successfully in the CAVES project. Recent
advances in complex networks increase the repertoire of measures - we recommend to include
clustering coe�cient and degree correlation.

Agents-focused complexity measures use agents' states as substrate for calculations. Ex-
ample measures: dynamism, polarization or clustering as applied to agents' choices.

Both network-based and agent-based measures can be analyzed as time series - this type of
analysis can focus on features such as volatility clustering or other examples of heteroscedas-
ticity.

Looking into a stability (or instability) of time behavior of selected variables or measures
we can apply resilience measures. This kind of analysis focuses on phase space looking for
alternative stability domains and how they change in time. It should be mentioned that certain
level of volatility can make this type of analysis inapplicable.

3 Network Measures

3.1 Introduction � notation and supplementary algorithms

Notation

• V � set of nodes

• E � set of edges, ejk � an edge linking nodes j and k for undirected graph or an edge
pointing from j to k for a directed graph

• W � adjacency matrix; N × N binary matrix such that W (i, j) = 1 if there is a link
between nodes i and j and W (i, j) = 0 if there is no link (in particular W (i, i) = 0)

• N � total number of nodes

• M � total number of links

• d(i) � degree of the node i, for directed graph we distinguish din(i) � number of incoming
edges and dout(i) � number of outcoming edges

• d � average node degree

• g(i, j) � distance (geodesic distance) between nodes i and j; length of the shortest path
between nodes i and j

• connected graph � each node is reachable from any other node

• geodesic � shortest path between two nodes
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3.1.1 Geodesic distance (shortest path length)

The path length algorithm (Dijkstra algorithm) returns the N - elements vector distance

of geodesic (shortest) distances between the node s and all the other vertices. An input to
Dijkstra algorithm is the matrix A(i, j) such that

• A(i, i) = 0,

• A(i, j) = 1 if i and j are linked (for directed graph: if there is a link pointing from i to
j, i.e. eij ∈ E)

• A(i, j) = inf if i and j are not linked (for directed graph: if eij /∈ E)

and a node s from which we compute the geodesic distances. The algorithm can be generalized
to when the direct connections between the nodes are expressed as connection "distances"
(inversely proportional to "strength" of the connection), rather than there is/there is not a
link.
Path length g(i, j) (where g(i, . . .) =distance(i)) is further used to determine the network
measures such as diameter and average path length.

%create an $N$-element zero vector

visited(1:N) = 0;

%assign all vertices,except s, the initial distance from s equal to infinity,

%set distance(s,s)=0

distance(1:N) = inf;

distance(s) = 0;

% The main loop does not repeat the contents exactly.

% In each run the vector no_visited is updated.

for i = 1:(N-1)

%read no visited node

%no_visited = [];

for j = 1:N

if visited(j)==0

no_visited(j) = distance(j);

else

no_visited(j) = inf;

end

end;

%selection of min

%x - minimal value of no_visited, j_min - the position of x;

%if there are more than one minimal element,

%the index of the first one is returned.

[x,j_min] = min(no_visited)

%mark visited node
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visited(j_min) = 1;

if(x==inf)

break

end;

%expand and update last visited node

for v = 1:n,

if ( ( A(j_min, v) + distance(j_min)) < distance(v) )

distance(v) = distance(j_min) + A(j_min, v)

end;

end;

end;

return

3.2 Transitivity (clustering) [3]

A deviation from the behavior of random graph can be seen in the property of network
transitivity (clustering). Some networks exhibit signi�cantly higher density of triangles in the
network: if vertex A is connected to vertex B and vertex B is connected to vertex C, then
there is some higher probability that A is also connected to C ("the friend of your friend is
likely also to be your friend").
Clustering coe�cient is de�ned as:

C(1) =
3× number of triangles in the network
number of connected triples of vertices

(1)

where "`connected triple"' is a single vertex with edges running to an unordered pair of other
vertices. An alternative de�nition of the clustering coe�cient (Watts and Strogatz) is given
as

C(2) =
1

N

∑
i

Ci (2)

where

Ci =


number of triangles connected to vertex i

number of triples centered in vertex i
, d(i) > 1

0, d(i) ≤ 1
(3)

is referred to as local clustering.

• undirected graph

Ci =
#{ejk ∈ E : j < k, j, k ∈ N(i)}

1
2

∑N
i=1 d(i)(d(i)− 1)

• directed graph

Ci =
#{ejk ∈ E : j, k ∈ N(i)}∑N

i=1 d(i)(d(i)− 1)
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here d(i) is the total (in + out) degree of the vertex d(i) = din(i) + dout(i) and N(i) =
{j : eij ∨ eji ∈ E}

The two de�nitions (1) and (2) di�er in the order of the operations of taking the ratio of
triangles/triples and averaging over all vertices. C(2) tends to assign higher weights to the
low-degree vertices than C(1). As far as calculation, C(2) is easily calculated on computer
whereas C(1) is more convenient for analytical calculations.

3.3 Assortativity

The network is called assortative if it exhibits positive degree-degree correlation. To quantify
this e�ect degree correlation coe�cient r is introduced as a normalized connected degree-
degree correlation function 〈jk〉 − 〈j〉 〈k〉 , where 〈. . .〉 expresses an average over the edges [4].
The normalization assures that r takes values within the range[−1, +1]. For a given network
degree correlation coe�cient r is calculated as follows [4]

r =
M−1∑

i jiki − [M−1∑
i(ji + ki)]

2

M−1
∑

i
1
2
(j2

i + k2
i )−

[
M−1

∑
i

1
2
(ji + ki)

]2 , (4)

where ji and ki are the degrees of nodes at the end of ith edge, the sums are taken over all M
edges.

Assortativity coe�cient r is computable both for directed and undirected graphs. For directed
graphs M is the total number of edges (in and out) and so are the degrees ki, ji � both in and
out summed up.

3.4 Average path length

Average path length is well de�ned for connected graphs

lG =
1

N(N − 1)

∑
i,j∈V

g(i, j) (5)

where g(i, j) is the geodesic distance from i to j. In order to generalize lG to the case of not
connected graph one may assign some high (but �nite) value to the distance of nodes that are
not reachable from each other g̃(i, j) = D, if g(i, j) = ∞. (D is a parameter1). If D = 0 than
lG is the average path length over all connected subgraphs.

Average path length may be computed both for directed and undirected graph. For an
undirected graph (5) may be rewritten as lG = 2

N(N−1)

∑
i,j∈V :i<j g(i, j).

1Note that the geodesic-path the algorithm should be run as it is. First we obtain geodesic distances and
then swap all in�nities for D. (This order is important, as otherwise the rules of adding to in�nity (last loop)
are altered).
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3.5 Resilience-related measures on network, [5]

3.5.1 Level of connectivity

• density of the links within the network (density of the graph) � the ratio of existing links
M to all possible links in the network.

� undirected graph

∆ =
M(
N
2

) =
2M

N(N − 1)
=

d

N − 1
. (6)

� directed graph

∆ =

∑N
i=1 d(i)

N(N − 1)
, (7)

where d(i) = din(i) + dout(i).

We can also de�ne the density of a subgraph, ∆S

∆S =
2MS

NS(NS − 1)

∆S measures the density of links between the nodes in a given subset and is used to
evaluate the cohesiveness of subgroups. (For directed graphs ∆S may be computed
analogously to (7)).

• reachability � Janssen et al. [5] suggest using network diameter as a measure of reacha-
bility. The diameter of a connected graph is de�ned as the length of the largest geodesic
connecting any pair of nodes in the network, [6]

diam = max
i,j∈V

g(i, j) ∈ {1, 2, . . . , N − 1}. (8)

If a graph is not connected, diam = ∞ (or is unde�ned).

Reachability applies to both directed and undirected graphs.

3.5.2 Level of centrality

The measures of centrality are de�ned for undirected graphs.
Degree based measures

• actor level: node degree CD(i) = d(i), or standardized measure C ′
D(i) = d(i)

N−1

• group level:

� general centralization index

CD =

N∑
i=1

C∗
D − CD(i)

(N − 1)(N + 1)
, (9)
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where C∗
D is the largest observed value, C∗

D = maxi CD(i). The maximum value (1)
and minimum value (0) are attained for star and regular graph, respectively.

� variance of the degrees

S2
D =

(
N∑

i=1
CD(i)− CD)2

N
, (10)

where CD = 1
N

N∑
i=1

CD(i). S2
D is zero for a regular graph.

Closeness centrality

• actor level:

Cc(i) =

 N∑
j=1

g(i, j)

−1

(11)

Cc(i) re�ects how close vertex i is to other vertices. It depends not only on direct ties
but the vertices that are not adjacent to i are also taken into account. The standardized
measure is given as C ′

c(i) = (N − 1)Cc(i).

• group level:

� Index of group closeness

Cc =

N∑
j=1

C ′∗
c − C ′

c(i)

[(N − 2)(N − 1)]/(2N − 3)
(12)

where C ′∗
c is a maximum obtained value. This measure attains minimum when all

geodesics are equal and maximum for a star graph.

� the variance of standardized actor closeness indices

S2
c =

(
N∑

i=1
C ′

c(i)− C ′
c)

2

N
. (13)

4 Agents-focused measures

4.1 Measures of decision clustering. Spatial autocorrelation

The concept of clustering is to �nd the degree to which neighbors in a space share common
attitudes. It relates the probability of sharing the same attitude and the distance between
two sites. In a random con�guration the probability of any two individuals sharing a common
view is independent of the distance and depends only on the proportions of of people holding
each attitude.
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The term `spatial autocorrelation' refers to the correlation of locational and attribute
similarities among spatial objects and has its roots in the area data analysis. It resembles the
Pearson's R2 correlation coe�cient. I varies (though not strictly) between the values '−1'
and '+1.' Positive spatial autocorrelation indicates that like values tend to cluster in space
whereas the negative SA suggests that neighbors are dissimilar. The random patterns exhibit
zero spatial autocorrelation, see �g. 3.

Figure 3: From the left: negative, zero and positive spatial autocorrelation pattern.

There is a number of indices of spatial autocorrelation, e.g. Moran (1950) (mainly applied
to the continuous type of data but using it in a discrete case does not pose any di�culties).

I =

N
∑
i

∑
j

Wij

(
Xi −X

) (
Xj −X

)
(
∑
i

∑
j

Wij)
∑
i

(
Xi −X

)2 (14)

where Xi, i = 1, . . . , N is the variable value (attribute) at i location, X is the average value
taken over all locations and Wij is a weight applied to the comparison between locations i and
j. Weights can be based on adjacency matrix (Wij ∈ {0, 1}) or distance (e.g. inverse distance).

We compare the observed value of spatial autocorrelation with the value that we would
expect in the random case. The �rst way to assess the signi�cance of the Moran's I statistics
is restricted to the data assumed to follow approximately a normal distribution. In this case

I − E(I)

SE(I)

d∼ N(0, 1),

where

E(I) = − 1

N − 1

and

SE(I) =

√√√√√√N2
∑
ij

W 2
ij + 3(

∑
ij

Wij)2 −N
∑
i
(
∑
j

Wij)2

(N2 − 1)(
∑
ij

Wij)2
,

particularly, for the adjacency matrix

SE(I) =

√√√√√N2S + 3S2 −N
∑
i
(ki)2

(N2 − 1)S2
.
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The p-value corresponding to the null hypothesis of no spatial autocorrelation is of the form

p = 2

(
1− F

(
I + (N − 1)−1

SE(I)

))
,

where F is the standard Gaussian cumulative distribution function.
Signi�cant spatial autocorrelation is indicated by p-value p lower than the signi�cance level

(usually 0.05).
The other way bases on the idea of sampling. We may realize spatial randomness both by

free sampling or nonfree sampling (randomization/permutation). In free sampling the nodes
are assigned attributes independently with the probabilities corresponding to their frequencies.
In non-free sampling (exact test, permutation test) the nodes are assigned attributes with the
constraint that the total number of each attribute is maintained (the data is permuted).
In both cases of sampling the value of the test statistic (here, I) is compared to reference
distribution being the distribution of the test statistic assuming the random sampling (null
hypothesis is true). The p-value is the proportion of the distribution that is at least as extreme
than the observed statistic, i.e.

p =
#{Iπ

i ≥ I}
no of permutations

,

where Iπ
i stands for the autocorrelation of ith realization of sampling.

5 Time series based measures

5.1 Kurtosis

Kurtosis is a measure of the "peakedness" of the probability distribution. Higher kurtosis
means that more of the variance is due to infrequent extreme deviations, as opposed to frequent
modestly-sized deviations. Most commonly kurtosis is de�ned as the fourth cumulant divided
by the square of the variance of the probability distribution, namely

γ2 =
µ4

σ4
− 3, (15)

which is also known as excess kurtosis. For a sample x1, x2, . . . , xn the sample kurtosis is

g2 =
n
∑n

i=1(xi − x)4

(
∑n

i=1(xi − x)2)2 − 3 (16)

where x is the sample mean. The distributions are classi�ed with respect to the value of
kurtosis as follows

• mesokurtic (mesokurtotic) � distributions with zero kurtosis (example: normal distribu-
tion family)

• leptokurtic (leptokurtotic, "super Gaussian") � distribution with positive kurtosis; a
leptokurtic distribution has a more acute "peak" around the mean and "fat (heavy)
tails" (examples: Laplace distribution, logistic distribution, t-student distribution)
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• platykurtic (platykurtotic, "sub Gaussian") � distribution with negative kurtosis; a
platykurtic distribution has a smaller "peak" around the mean and "thin tails" (ex-
amples: continuous or discrete uniform distributions, raised cosine distribution)

5.2 Estimation of the tail exponent

This section refers to data that exhibits power law behavior for right tails (power laws are
easily detectable with log-log plots, i.e. power-law data with tail exponent α is seen as a
straight line with slope α)

A simple method follows from the fact that for large x the logarithm of the distribution
tail (1- cdf) is linear, i.e.,

log P (X > x) ≈ const− α log x. (17)

For a sample x1, x2, . . . , xT we build the order statistics as follows

x(1) ≥ x(2) ≥ . . . ≥ x(T ).

Only m largest order statistics (m largest elements of the series xi) are used to build the
estimator (Hill,1975)

â =

(
1

m− 1

m∑
i=1

log x(i) − log x(m)

)−1

=

(
1

m− 1

m∑
i=1

log
x(i)

x(m)

)−1

.

A simple rule of thumb says that m should be chosen so that the ratio of m to all elements
(m/T ) is around 0.5%�1%.
Note that Hill estimation is sensitive to the data set (choice of m).

5.3 Detecting heteroscedasticity

Useful notions:

• A sequence of random variables is homoscedastic if all random variables in the sequence
have the same �nite variance. This is also known as homogeneity of variance. See Fig.
4

• The complement of homoscedasticity is called heteroscedasticity. Heteroscedasticity
can arise in a variety of ways. Typically tests for heteroscedasticity are designed to
test the null hypothesis of homoscedasticity (equal error variance) against some speci�c
alternative heteroscedasticity speci�cation. See Fig. 4

Preliminary analysis. First step is to identify and remove the trend and the seasonality
pattern from the data. The standard step is to plot the series and its autocorrelation function,
ACF. The sample autocorrelation function (set of observations {x1, x2, . . . , xT}) is given as

ACF (k) =
γ̄(k)

γ̄(0)
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where γ̄(k) is sample autocovariance function is

γ̄(k) =
1

T

T−k∑
t=1

(xt − x̄T )(xt+k − x̄T ), k = 0, 1, ..., T − 1

and x̄T = T−1∑T
t=1 xt.

If the series is nonstationary, the ACF decays slowly and the usual solution is to analyze
the di�erenced series (once or more, at lag one or more). Normally, the correct amount of
di�erencing is the lowest order of di�erencing such that a time series �uctuates around a
well-de�ned mean value and ACF plot decays fairly rapidly to zero (either from above or
below). One has to be careful to avoid over-di�erencing, usually d ≤ 2. In case of seasonal
nonstationarity the ACF is zero except at lags S, 2S, 3S, . . . and decays very slowly. This can
be made stationary by seasonal di�erencing (1−BS)xt, (1−BS)2xt, . . . , (1−BS)Dxt. Usually
D = 1 [7].
Detecting heteroscedasticity. ACF plot provides a tool to determine the conditional
heteroscedasticity. Although the ACF of the observed data, i.e. {x2

1, x
2
2, . . . , x

2
T} exhibits

little correlation, the ACF of the squared data may still indicate signi�cant correlation and
persistence in the second-order moments [8], see Fig. 5
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Figure 4: Examples of: homoscedastic data (1), heteroscedastic data: (2,3)
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