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Chapter 1

Introduction

1.1 Network. Basic notions and properties

Let us consider a population of N individuals (nodes) labeled as 1, 2, . . . , N with a certain
con�guration of links between them that form a network. The network structure (links) is
represented by a N ×N matrix D = (dij) where dij stands for the "distance" from the node
i to the node j. In general d has not to have the sense of the distance as it lacks symmetry in
the directed graph case. One of the possible distance de�nitions is as follows

dij =


0, if i = j
1, if i is connected to j
∞, if i is not connected to j

(1.1)

with the additional assumption that i is connected to j (i 7→ j) i� j 7→ i yielding the symmetric
matrix D, i.e. D = DT .

Because of the uncomfortable in�nity symbol in D we introduce the matrix of connectivity
(nearness [10]) ∆ = (δij) such that

δij =

{
0, dij 6= 1,
1, dij = 1.

Notice that each node is considered unconnected with itself.
For some of the further presented measures of clustering the generalization of D is possible

in the sense that D contains the weighted distances between nodes and not only the binary
information on the presence or lack of connection.

• Neighborhood

Each node i in the network has its neighborhood denoted Γ(i) which is a set of nodes
that are directly connected with i. In general case of (the directed graph) we de�ne the
in-neighborhood and the out-neighborhood as, respectively, the set of nodes that are
connected to i and the set of nodes that i is connected to. More precisely

Γin(i) = {j ∈ {1, 2, . . . , N} : dij = 1}

Γout(i) = {j ∈ {1, 2, . . . , N} : dji = 1}

2



CHAPTER 1. INTRODUCTION 3

or alternatively
Γin(i) = {j ∈ {1, 2, . . . , N} : δij = 1}

Γout(i) = {j ∈ {1, 2, . . . , N} : δji = 1}

If the connections in the network form an undirected graph Γin = Γout = Γ.

• Degree. In-degree. Out-degree

If the matrix D is symmetric (undirected case) the degree of ith node ki is the number

of elements in Γ(i), ki = Γ(i). In the general case the notions of in-degree kin and out-
degree kout are distinguished [10]. In the matrix notation kout = ∆1, kin = ∆T1, where
1 is a N × 1 column vector of ones. In the symmetric case kin = kout = k. The total
number of connections (pairs) S if all the i 7→ j and j 7→ i links are counted separately
is given as S = 1T∆1 = kT1.

• Regular lattice

In some cases we will refer to the notion of regular lattice with periodic boundary
conditions. For convenience, we consider only regular network with the degree n being
an even number. An exemplary connectivity matrix ∆ for the 4-neighbors regular lattice
with 8 nodes is of the form

∆ =



0 1 1 0 0 0 1 1
1 0 1 1 0 0 0 1
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1
1 0 0 0 1 1 0 1
1 1 0 0 0 1 1 0


which gives an idea of the construction of ∆.

Notice that in the n-regular matrix the total number of pairs S = nN.

• Binary choice

Each node (i) at a �xed time is characterized by its decision (attitude), being the result
of its preliminary binary choice (see 1.2). The decision is denoted by variable σi taking
the values −1 or 1. Some authors prefer the 0 and 1 distinction. We use the following
notation:

σ = [σ1, . . . , σN ]T

Σ =


σ1 0 . . . 0

0 σ2
. . .

...
...

. . . . . . 0
0 · · · 0 σN


The majority of clustering measures bases on the notion of the number of pairs of neighbors

that share the same attitude (pairs of common neighbors). Either the total number of such
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pairs (with or without the +1 and −1 pairs distinction) is of interest or the distribution over all
nodes is considered. The latter case correspond to the distribution of the number of neighbors
that share the attitude (see 2.2.1). We will use the following terms:

• Q(11) the column vector of the number of neighbors (for each node) that share the

attitude 1. More precisely Q
(11)
i is zero if σi = −1 and if σi = 1 Q

(11)
i equals the number

of nodes from Γ(i) that take the value 1 if σi = 1, i.e.

Q
(11)
i =

σi + 1

2

N∑
j=1

δij
1 + σiσj

2
. (1.2)

• Analogously, we de�ne Q(−1−1) for the number of neighbors that share the attitude −1,

Q
(−1−1)
i =

−σi + 1

2

N∑
j=1

δij
1 + σiσj

2
. (1.3)

• The sum Q = Q11 +Q−1−1, gives the number of pairs in which both neighbors share the
same attitude.

• The number of pairs of neighbors with opposite attitude (here, we count together the
−1, 1 and 1,−1 cases) is:

Q−11
i = ki −Qi. (1.4)

In the matrix notation we have

Q =
1

2
(Σ∆σ + k) (1.5)

Q(11) =
1

2
(Σ + I)Q (1.6)

Q(−1−1) =
1

2
(−Σ + I)Q (1.7)

Q(−11) = k−Q (1.8)

The total number of pairs of each type is given by:

q = QT1 (1.9)

q(11) = (Q(11))T1 =
1

4
(σ + 1)T∆(σ + 1) (1.10)

q(−1−1) = (Q(−1−1))T1 =
1

4
(1− σ)T∆(1− σ) (1.11)

q(−11) = S − q. (1.12)
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1.2 Binary choice

In standard formulations of binary choice models each individual is making a choice σi between
two alternatives usually coded as −1 and 1 or 0 and 1 (obviously any other codi�cation is pos-
sible). The decision is a result of the comparison of two choices: the more pro�table/e�ortless
is better. Of course the choice is done from the individual's point of view and does not have to
be objectively better. In general the choice is being made in the environment created by the
neighbors of individual, the external in�uence and the former attitude of the individual. More-
over, it may be biased by some noise (random-originated �uctuations of decisions). Formally,
σi has to ful�ll

Ui(σi) ≤ Ui(−σi)

where Ui may be denominated as a utility function or a pay-o� function. Generally Ui depends
on σi, σj, for j ∈ Γ(i) and hi - the external randomly biased �eld. For the purpose of this
report (computer simulations in use) we limit ourselves to the utility function of the form,

Ui(σ
′
i) = σ′i

h + s(bσi +
∑

j∈Γ(i)

σj)

 (1.13)

where s, b > 0 are the strength parameters (sb determines the self-supporting strength). For
n-regular network, we put s = 1

n
. The external random has the random logistic distribution

with the mean value h0, i.e.

Pr(h < z) =
1

1 + exp(−2/T (z − h0))

where the parameter T > 0 accounts for the the variance of distribution and is identi�ed with
the so called 'social temperature'. For details see [2, 4, 6, 7, 9].

1.3 Clustering

Two main approaches to the clustering analysis appear from the literature studies. The �rst
one bases on the intuitive de�nition of the cluster and points out the cluster-size distribution
in the given network structure. It deals with the clusters physically present (in the sense that
they are to be shown one by one) in the system. The clustering is described by means of
clustering density and the notion of the average cluster size.

The other class of clustering measures bases on the idea of counting the pairs of neighbors
that share the same attitude. The clustering reads the degree to which spatial neighborhood
and the decisions are correlated. In the random con�guration of a given proportion of the
decisions +1 and 1 the total number of pairs of nodes that are of the same sign should be
signi�cantly smaller than that in the con�guration that displays clustering.
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Measures of clustering

2.1 Cluster size density. Average cluster size

In our de�nition we want to assume "one" to be the minimum size of a cluster that yields
each node being a part of certain cluster. Secondly, we want the clusters to be disjunctive
such that each node belongs to one and only one cluster.

Let i be the node in the network. The cluster C(i) generated by i may is de�ned by

the following recursive formula

1. i ∈ C(i)

2. if j ∈ C(i) and for any k ∈ Γ(j) σk = σi then k ∈ C(i)

This way, in the �rst turn, all the neighbors of i that share i's attitude are included into
the cluster C(i) and in next turns these neighbors of newly added members of C(i) that share
the attitude σi are subsequently jointed.

Each node is attributed to a cluster of a certain size N being the number of its elements.
Firstly, we focus on the cluster-size distribution. Let L(s, N) be the number of clusters of size
s in the network of size N nodes. Notice that sL(s, N) is the number of nodes that belong
to the clusters of size s and

∑
s sL(s) = N. This quantity depends on the network size N and

therefore the normalized one � cluster number density given as

l(s, N) = L(s, N)/N, (2.1)

is introduced [3]. In this notation sn(s, l) is the probability that a given node belongs to
the s-cluster. We may distinguish the +1 and −1 cluster-size distribution (the clusters with
attitude +1) or examine them jointly. It seems interesting to examine the data in respect to
the power-law characterizing the cluster-size density.

2.1.1 Average cluster size

The average cluster size [1, 3] is de�ned by the following formula

χ =

∑
s

s · sL(s, N)∑
s

L(s, N)s
=

∑
s

s2L(s, N)

N

6
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In the denominator we have the total number of nodes, in the numerator the sum taken over
all nodes of the size of clusters they belong to. Again, we may consider +1 and −1 separately
or/and jointly. See �g. 2.1

Figure 2.1: Counting from the left bottom corner in a clockwise motion the nodes (20) belong to the clusters
of sizes: 2, 2, 2, 2, 5, 5, 5, 5, 5, 1, 1, 5, 5, 5, 5, 5, 3, 3, 3, 1. χ = 1

20 (2·2+2·2+5·5+1·1+1·1+5·5+3·3+1·1) = 3.5;
χ1 = 1

11 (2 · 2 + 5 · 5 + 1 · 1 + 3 · 3) = 3.55 χ−1 = 1
9 (2 · 2 + 1 · 1 + 5 · 5 + 1 · 1) = 3.44

2.1.2 Examples

The �gures 2.2 and 2.4 shows the cluster size density in the stationary state in a model,
respectively, with and without external �eld and �uctuations. On the �gures 2.3 and 2.5 one
can see the evolution in time (converging to stationary state) of the average cluster size.

Figure 2.2: Figure 2.3:

Table 2.1: The binary choice parameters for �gures 2.2, 2.3: h = 10, T = 100, network =
4-regular, b = 0.
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Figure 2.4: Figure 2.5:

Table 2.2: The binary choice parameters for �gures 2.2, 2.3: h = 10, T = 100, network =
4-regular, b = 0.

2.2 Measures based on the number of common pairs

2.2.1 Cluster probability

Cluster probability (CP ) is a measure adopted from the analysis of spatial data and, originally,
is a factor of the association of attitudes on the two dimensional array with a von Neumann
neighborhood (the cells "to the north, east, south and west"). This approach introduces a
de�nition of a cluster, i.e.

a node belongs to a cluster if its four nearest neighbors all share its

attitude.

The cluster probability is de�ned as a fraction of points that are a part of cluster or in
other words it is a probability that an arbitrary point is a part of a cluster [11].

It seems natural to generalize CP by replacing in the cluster de�nition 'four nearest neigh-
bors' by 'all nearest neighbors' no matter the matrix ∆, formally

CP =

N∑
i=1

fi (Qi)

N
(2.2)

where

fi(x) =

{
1 x = ki,
0, x 6= ki.

(2.3)

or in the matrix notation

CP =
1

N
(f(Q))T 1, (2.4)

where f(x) = f([x1, . . . , xN ]T ) = [f1(x1), . . . , fN(xN)]T .
Technically, we count these nodes that share their attitude with all their neighbors and divide
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this number by the total number of nodes.

The next step would be to assign certain non-zero coe�cients to the nodes that share their
attitude with some majority of their neighbors, i.e. we set fi such that fi(x) = f(x, ki) :
N ×N → [0, 1], is for a �xed i a nondecreasing function of x.

Notice that for a n-regular lattice, CP may be expressed as

CP =
n∑

i=1

Pr(M = i)ai (2.5)

where ai = f(i, n) = f(i/n) is a nondecreasing sequence of positive numbers and M is the
(random) number of common neighbors for an arbitrary node. In particular if we set f(1) = 1
and f(x) = 0 for x < 1 we get the 'classical' de�nition of CP. Therefore CP is a quantity
determined by the M distribution.

As a simple example let us consider binary choice model with no external �eld nor �uctu-
ations, h0 = 0, T = 0. One can show that

σ′i = sgn

bσi +
∑

j∈Γ(i)

σj

 (2.6)

For n-regular network (even n)
∑

j∈Γ(i) σj takes the values −2n,−2n+2,. . . , 0, . . . , 2n− 2, 2n.
Therefore, the decision rule depends on the sign of ±b + 2k, where k = −n, . . . , n that does
not change for b in intervals [0, 2), [2, 4), ... [2n,∞). See tables 2.3, 2.4, 2.5.

Figure 2.6: (Clustering measures in stationary state as a
function of self-supporting b parameter

Figure 2.7: b = 0 : Mean magnetization in time, the
visualization in stationary state, cluster probability in time
and the histogram of common neighbors distribution

Table 2.3: The results for 8-regular network, N = 400 nodes, h0 = 0, T = 0.

2.2.2 Individual- and group-level index of clustering.

An instance of the generalized cluster probability is the clustering individual-level index
(Cindiv) introduced by Nowak and Latane [7]. Cindiv is the proportion of neighbors sharing the
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Figure 2.8: b = 2 : Mean magnetization in time, the
visualization in stationary state, cluster probability in time
and the histogram of common neighbors distribution

Figure 2.9: b = 4 : Mean magnetization in time, the
visualization in stationary state, cluster probability in time
and the histogram of common neighbors distribution

Table 2.4: The results for 8-regular network, N = 400 nodes, h0 = 0, T = 0.

Figure 2.10: b = 6 : Mean magnetization in time, the
visualization in stationary state, cluster probability in time
and the histogram of common neighbors distribution

Figure 2.11: b = 8 : Mean magnetization in time, the
visualization in stationary state, cluster probability in time
and the histogram of common neighbors distribution

Table 2.5: The results for 8-regular network, N = 400 nodes, h0 = 0, T = 0.

same attitude summed over all nodes, i.e.

Cindiv =
q

S
(2.7)

leading to (2.4) for fi(x) = N
S
x.

If the network is the n-regular lattice fi(x) = x
n
and (2.7) may be expressed as

Cindiv =
1

N

N∑
i=1

Qi

n
, Qi ∈ {1, 2, . . . , n} (2.8)

showing that in this case each node contributes to the cluster probability proportionally to
the number of neighbors that share his attitude.

Notice that for an arbitrary network and proportion of the decisions ±1 even in the com-
pletely random con�guration the index Cindiv need not to be close to 0. Moreover Cindiv need
not to be close 1 if the system is in the maximum possible order. However, this is what one
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would expect of a 'good' measure of clustering. To normalize the index so that the above two
conditions hold, Nowak and Latane de�ne the 'group-level index of clustering'

Cgroup =
Cindiv − Cchance

Cmax − Cchance

, (2.9)

where Cchance is the proportion of pairs of common neighbors expected if attitudes are dis-
tributed randomly (but the proportion of +1 and −1 are maintained) and Cmax is the max-
imum possible proportion of common neighbors. Cchance and Cmax in some cases may be
calculated analytically (regular networks). In general Cchance may be easily computed numer-
ically as an average proportion taken over a number of permutations of the attitudes. In the
n-regular network case:

CR
chance = (P ∗ (P − 1) + Q ∗ (Q− 1))/(N ∗ (N − 1))

where P = 1/2(σ + 1)1, Q = 1/2(−σ + 1)1 are the numbers of nodes with 1 and −1,
respectively. The CR

max corresponds to the following con�guration:

σ = [1, . . . , 1︸ ︷︷ ︸
P

,−1, . . . ,−1︸ ︷︷ ︸
Q

]T .

How to obtain the value of Cmax seems somehow more complicated and is still an open question.

2.2.3 Spatial autocorrelation

The term `spatial autocorrelation' refers to the correlation of locational and attribute simi-
larities among spatial objects and has its roots in the area data analysis. It resembles the
Pearson's R2 correlation coe�cient. Under the null hypothesis of no spatial autocorrelation,
I has an expected value near zero for large n, E(I) = − 1

n−1
. I varies (though not strictly)

between the values '−1' and '+1.' Positive spatial autocorrelation indicates that like values
tend to cluster in space whereas the negative SA suggests that neighbors are dissimilar. The
random patterns exhibit zero spatial autocorrelation, see �g. 2.12.

Figure 2.12: From the left: negative, zero and positive spatial autocorrelation pattern.

There is a number of indices of spatial autocorrelation, one of the oldest was proposed by
Moran (1950) and is still widely in use. Although it is mainly applied to the continuous type
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of spatial data using it in a binary case is also possibly and does not pose the di�culties. The
formula proposed by Moran (Moran's I) is as follows

I =

N
∑
i

∑
j

Wij

(
Xi −X

) (
Xj −X

)
(
∑
i

∑
j

Wij)
∑
i

(
Xi −X

)2 (2.10)

where Xi, i = 1, . . . , N is the variable value at i location, X is the average value taken over
all locations and Wij is a weight applied to the comparison between locations i and j. The
weight matrix depicts the relation between an element and its surrounding elements. Weights
can be based, for example, on contiguity relations or distance. In a weight matrix based on
contiguity, a value unequal to zero in the matrix represents pairs of elements with a certain
contiguity relation and a zero represents pairs without contiguity relation. in the context of
binary choice in network reads

I =

N
∑
i

∑
j

δij(σi −m)(σj −m)

S
∑
i

(σi −m)2 . (2.11)

Formula (2.11) may be rewritten as a function of a weighted sum of q(11) and q(−1−1).

I =
(1−M/N)q(11) + (M/N)q(−1−1)

SM/N(1−M/N)
− 1 (2.12)

where M is the number of +1 nodes, i.e. M = 1/2 (σ + 1)T 1. In the terms of the mean
magnetization m = 1

N

∑N
i=1 σi = 1/Nσ 1 formula (2.12) reads

I =
(1−m)q(11) + (1 + m)q(−1−1)

2S(1−m2)
− 1. (2.13)

In general, we compare the observed value of spatial autocorrelation with the value that
we would expect under the randomness of the locations of values +1 and −1. The �rst way to
assess the signi�cance of the Moran's I statistics bases on the convergence to Gaussian and
is restricted to the data assumed to follow approximately a normal distribution for which the
expectation and variance can be calculated. In this case

I − E(I)

SE(I)

d∼ N(0, 1),

where

E(I) = − 1

N − 1

and

SE(I) =

√√√√√√N2
∑
ij

W 2
ij + 3(

∑
ij

Wij)2 −N
∑
i
(
∑
j

Wij)2

(N2 − 1)(
∑
ij

Wij)2
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or for the contiguity matrix

SE(I) =

√√√√√N2S + 3S2 −N
∑
i
(ki)2

(N2 − 1)S2
.

The p-value corresponding to the null hypothesis of no spatial autocorrelation is of the form

p = 2

(
1− F

(
I + (N − 1)−1

SE(I)

))
,

where F is the standard Gaussian cumulative distribution function.
Signi�cant spatial autocorrelation is indicated by p-value p lower than the signi�cance level

(usually 0.05). Obviously, the lower the signi�cance level, the more the data must diverge from
the null hypothesis to be signi�cant.

The other way bases on the idea of sampling. There are at least two ways of de�ning
spatial randomness: free sampling and nonfree sampling (randomization/permutation). Con-
sequently, there are two types of null hypotheses. Under the null hypothesis in free sampling
the nodes are assigned +1 or −1 independently with the probabilities M/N and 1 − M/N
respectively. In non-free sampling (exact test, permutation test) the nodes are assigned +1
or −1 with the constraint that the total number of +1 is maintained (the data is permuted).
In both cases of sampling the value of the test statistic (here, I) is compared to reference
distribution being the distribution of the test statistic assuming the null hypothesis is true.
The p-value is the proportion of the distribution that is at least as extreme than the observed
statistic. If the p-value is smaller than the required signi�cance level then the null hypothesis
is rejected and an alternative hypothesis is rendered more plausible.

2.2.4 Join-count analysis

Spatial patterns for binary data (e.g. presence/ absence) from adjacent sampling units (e.g.
parcels) or regions (e.g. counties) can be assessed also using joincount statistics [5, 10]. For
the binary case, the null hypothesis states that neighboring regions are more likely to be
of the same category, say '−1' ('0', white) or '+1' (black), and therefore not described by a
pattern of randomness. The observed join-count statistics count the number of join encounters
in adjacent regions having the same category (already introduced q(11) and q(−1−1)); another
corresponding join-count statistic counts the number of adjacent regions not having the same
category (q(−11)). Hence the q(11) and q(−1−1) statistics assess the presence of positive spatial
autocorrelation, while q(−11) assesses the presence of negative spatial autocorrelation. As it
was already stressed, the Moran's I spatial autocorrelation statistic (2.12) may be expressed
as a weighted sum of q(11) and q(−1−1). As a consequence, the Moran's I receives a high value
also when +1 are clustered but −1 are not (or on the contrary).Therefore, one �nds some
advantage to use the measures q(11) and q(−1−1) which are separately related to groups of both
attitudes.

It is redundant to use all the statistics together as q(11) + q(−1−1) + q(−11) = const = S. In
general, either only q(−11) is used or a pair � both q(11) and q(−1−1), if the di�erent patterns of
clustering for '+1' and '−1' are of interest. As for the Moran's I, we compare the observed
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q (the one of interest) with its probability distribution under complete randomness (obtained
from either free or non-free sampling), and accept or reject the null hypothesis. The signi�cance
probability - p-value based on B random permutations is given as the proportion of events
such that the join-count statistic of randomly permuted vector σ surpasses the corresponding
q, namely

p =
{qπ ≥ q}

B
. (2.14)

If free sampling is considered, we proceed analogously � instead of permute σ, the spatial
autocorrelation is calculated for vectors randomly drawn within the rules formerly mentioned.

2.3 Clustering coe�cient

The term 'clustering' is also used in the context of the transitivity of network structure [8].
Although this meaning of clustering is not the subject of the consideration of this paper, the
de�nition of clustering coe�cient (the classical transitivity measure) seems to be applicable
after some modi�cations. In the context of network topology, transitivity (or clustering) means
a heightened number of triangles: sets of three nodes where each node is connected with two
others. The clustering coe�cient is de�ned as the ratio

CC =
3× total number of triangles in the network

total number of triples in the network
,

where triple is a single node with two links to an unordered pair of other nodes. We propose
the following form of clustering coe�cient:

CC =
number of triangles with common attitude

total number of triangles
. (2.15)

In this approach we do not count the number of pairs of common neighbors but the triangles
of common neighbors. Notice, that for the 2-neighbors regular lattice (chain) the triangles
do not occur and thus the clustering coe�cient does not apply. Moreover it seems that it
would not work properly for more complex network that are partly composed of chains. Let
us consider the following example: the network that is composed of two parts: N1 and N2

such that N1 ∩ N2 = {k} (the subnetworks N1 and N2 are joint by a single node k). Let N1

be characterized by the the clustering coe�cient CC1, cluster probability CP1 and number of
nodes N1. As regards N2, we assume that it is a chain of the length (number of nodes) M and
that all the nodes in N2, have the same value as σk, say +1. Intuitively N1∪N2 is more clustered
than N1. The cluster probability increases, CP1∪2 = CP1N+m

N+m
≥ CP1 so does the average cluster

size and the individual level index. At the same time the cluster coe�cient does not change
CC1∪2 = CC1 as the number of triangles is constant.

We present (see Tab. 2.6,2.7,2.8) computer calculations: the clustering statistics (clus-
ter probability, clustering individual-level index, clustering coe�cient, p-values for join-count
statistics q(11), q(−1−1) and q(−11), spatial autocorrelation (I) and p-value for I) for three par-
ticular networks
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cp: 0.5525

c_indiv: 0.8275

cc: 0.7700

p11: 0

p_1_1: 0

p_11: 0

I: 0.6447

pvalue: 0

Table 2.6: N1 � the 4-neighbors regular network composed of N1 = 400 nodes with the values
σ = [σ1, . . . , σ400]

T such that the clustering measures are as shown on the right. On the left,
distribution of join-count statistics under H0 and the observed values (red lines).

cp: 0.8011

c_indiv: 0.8938

cc: 0.7700

p11: 0

p_1_1: 0

p_11: 0

I: 0.9736

pvalue: 0

Table 2.7: The clustering statistics for N1 ∪ N2 where N2 is a chain of N2 = 500 nodes which
are all common with the node that joins N1 and N2, i.e. σ401 = . . . = σ900 = σ400 = −1, On the
left, distribution of join-count statistics under H0 and the observed values (red lines).

cp: 0.2456

c_indiv: 0.5092

cc: 0.7700

p11: 0.0320

p_1_1: 0.9160

p_11: 0.3280

I: 0.0084

pvalue: 0.6283

Table 2.8: For N1 ∪ N2 such that [σ401, σ402, . . . , σ899, σ900]
T = [1,−1, . . . , 1,−1]T . On the left,

distribution of join-count statistics under H0 and the observed values (red lines).
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Results and comments

As it has been already mentioned a 'good' measure of clustering should indicate whether
the spatial pattern di�ers from the pattern under random con�guration. Notice, that if the
mean magnetization m is close to its extreme values (+1 or −1) neither cluster probability
nor individual level index satisfy this condition. The extreme values of mean magnetization
corresponds to high disproportion majority/minority, the minority is very small and cluster
probability takes high values no matter the spatial pattern that minority exhibits.

Let us consider the examples of network with mean magnetization close to 1, in particular
we consider respectively 2-regular and 4-regular network. In all cases N = 1600, the number
of minority nodes N− = 50 yielding m = 1600−50

1600
= 0.9688. For each network, we calculate

di�erent measures of clustering for two con�guration: all minority nodes are gathered in a
single cluster and the random con�guration. In all cases the values of cluster probability,
individual-level index and clustering coe�cient are high. The randomness is detected by
cgroup that takes values close to 0 for random con�guration. The p-values corresponding to
Moran's I autocorrelation and join-count statistics also detect the randomness. On the �gures
(left) one can see how 'far from randomness' the values of join-count q are.

16
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N=100, m=50, 2-regular

cp: 0.9975

c_indiv: 0.9988

c_group: 1

p-value (q): 0

I: 0.9794

p-value (I): 0

Table 3.1: All minority nodes in one cluster in 2-regular network. On the left, distribution
of join-count statistics under H0 and the observed values (red lines). On the right, clustering
measures.

cp: 0.9081

c_indiv: 0.9387

c_group: -0.0088

p-value (q): 0.7920

I: -0.0116

p-value (I): 0.5347

Table 3.2: Random con�guration of minority nodes in 2-regular network. On the left, dis-
tribution of join-count statistics under H0 and the observed values (red lines). On the right,
clustering measures.

As another example let us consider the time evolution of clustering measures for a binary
choice with high values of external �eld, (h0 = 100) temperature (T = 100) and self-supporting
(b = 10) in 4-regular network. Again, CP and cindiv take high values though the spatial pattern
is random. The peaks of cgroup (�g. 3.2) and the undeterminable autocorrelation (�g. 3.3)
correspond to the mean magnetization equal exactly 1 (all nodes have the same sign).
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N=100, m=50, 4-regular

cp: 0.9950

c_indiv: 0.9981

c_group: 1

cc: 0.9975

p-value (q): 0

I: 0.9690

p-value (I): 0

Table 3.3: All minority nodes in one cluster in 4-regular network. On the left, distribution
of join-count statistics under H0 and the observed values (red lines). On the right, clustering
measures.

cp: 0.8500

c_indiv: 0.9387

c_group: -0.0115

cc: 0.9081

p-value (q): 0.8280

I: -0.0116

Z: -0.8768

p-value (I): 0.3806

Table 3.4: Random con�guration of minority nodes in 4-regular network. On the left, dis-
tribution of join-count statistics under H0 and the observed values (red lines). On the right,
clustering measures.

3.1 Conclusions

We have presented several measures of clustering which we divided in two main groups: cluster
size distribution and common neighbors distribution measures. Additionally, we introduced
clustering coe�cient analogous to the measure of network transitivity. The 'good' measure
of clustering should indicate whether and/or how far from randomness the observed spatial
pattern is. This condition is satis�ed by the measures that use the statistics methods of hy-
potheses testing (join-count, spatial autocorrelation) and by the group-level index of clustering.
However, the latter is not (so far) easily determinated in non-regular network case.
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Figure 3.1: Mean magnetization (top) in time. Cluster
probability, individual-level index an clustering coe�cient in
time (bottom).

Figure 3.2: Group-level of clustering.

Figure 3.3: Moran's I spatial autocorrelation in time. Figure 3.4: P-values for join-count statistics in time.

Table 3.5: The binary choice parameters: h0 = 100, T = 170, b = 10, 4-regular network.
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