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Highly pathogenic H5N1 influenza A viruses are now endemic in avian populations in Southeast Asia, and human cases
continue to accumulate. Although currently incapable of sustained human-to-human transmission, H5N1 represents a
serious pandemic threat owing to the risk of a mutation or reassortment generating a virus with increased
transmissibility. Identifying public health interventions that might be able to halt a pandemic in its earliest stages is
therefore a priority. Here we use a simulation model of influenza transmission in Southeast Asia to evaluate the potential
effectiveness of targeted mass prophylactic use of antiviral drugs as a containment strategy. Other interventions aimed
at reducing population contact rates are also examined as reinforcements to an antiviral-based containment policy. We
show that elimination of a nascent pandemic may be feasible using a combination of geographically targeted prophylaxis
and social distancing measures, if the basic reproduction number of the new virus is below 1.8. We predict that a
stockpile of 3 million courses of antiviral drugs should be sufficient for elimination. Policy effectiveness depends critically
on how quickly clinical cases are diagnosed and the speed with which antiviral drugs can be distributed.

The continuing spread of H5N1 highly pathogenic avian influenza in
wild and domestic poultry in Southeast Asia represents the most
serious human pandemic influenza risk for decades1,2. Great poten-
tial benefits would be gained from any intervention able to contain
the spread of a pandemic strain and eliminate it from the human
population. However, the rapid rate of spread of influenza—as
witnessed both in annual epidemics and past pandemics3–5—poses
a significant challenge to the design of a realistic control strategy.
The basic reproduction number6, R0, quantifies the transmissibility

of any pathogen, which is defined as the average number of secondary
cases generated by a typical primary case in an entirely susceptible
population. A disease can spread if R0 . 1, but if R0 , 1, chains of
transmissionwill inevitably die out. Hence, the goal of control policies
is to reduce R0 to below 1 by eliminating a proportion 1 2 1/R0 of
transmission. This can be achieved in three ways: (1) by reducing
contact rates in the population (through ‘social distance measures’),
(2) by reducing the infectiousness of infected individuals (through
treatment or isolation), or (3) by reducing the susceptibility of
uninfected individuals (by vaccination or antiviral prophylaxis).
Vaccination and antiviral drugs offer protection against infection

and clinical disease. However, although effective vaccines exist for
interpandemic flu, candidate H5N1 vaccines have unproven effec-
tiveness7, and production delays would in any case limit availability
in the first months of a pandemic. Antiviral agents—particularly the
neuraminidase inhibitors, which show experimental effectiveness
against all influenza A subtypes8,9—are therefore a key aspect of
recently revised pandemic preparedness plans in several countries10.
For antivirals to significantly reduce transmission, prophylactic use

is necessary. Large-scale prophylaxis has the potential to limit spread
substantially in a developed country11, but the very large stocks of drug
necessary make this policy impractical if the pandemic is already
global. However, might such a policy nonetheless be a feasible strategy

if applied at the source of a new pandemic, when repeated human-to-
human transmission is first observed? Here we address this question,
and focus on identifying the threshold level of transmissibility below
which containment of any new pandemic strain might be feasible.

Modelling pandemic spread

We modelled pandemic spread in Southeast Asia, as this region
remains the focus of the ongoing avian H5N1 epidemic and is where
most human cases have occurred. Data availability led us to model
Thailand rather than any perceived greater risk of emergence com-
pared to other countries in the region; however, we believe our
conclusions are also valid for other parts of Southeast Asia.
We constructed a spatially explicit simulation of the 85 million

people residing in Thailand and in a 100-kmwide zone of contiguous
neighbouring countries. The model explicitly incorporates house-
holds, schools and workplaces, as these are known to be the primary
contexts of influenza transmission12–14 (see Fig. 1 and Methods) and
because control measures can readily target these locations. Random
contacts in the community associated with day-to-day movement
and travel were also modelled.

Natural history and transmission parameters

Fundamental to the feasibility of any containment strategy is being
able to quantify the transmissibility of the emergent virus, R0.
Reliable past estimates of transmissibility are rare, perhaps owing
to the antigenic diversity of influenza and the consequent complex
effect of population immunity on transmission.
We re-analysed incubation period and household transmission

data for human influenza (see Methods) and derived new natural
history parameters, which predict a profile of infectiousness over
time that is remarkably consistent with viral shedding data from
experimental infection studies (see Fig. 1g and ref. 15). This profile
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gives an estimate of the serial interval or generation time, Tg (the
average interval from infection of one individual to when their
contacts are infected), of 2.6 days, compared with the value of
,4 days assumed by most previous modelling studies16. Re-analysis
of bothUS andUK1918 pandemicmortality data using this new value
ofTg revises pandemic influenzaR0 estimates5 downwards to approxi-
mately 1.8 (Fig. 1f and Supplementary Information). This yields a
predicted infection attack rate of 50–60% during a pandemic, consist-
ent withwhat was seen in the first and secondwaves of past pandemics
(see Supplementary Information). AnR0 value of 1.8 is also consistent
with annual interpandemic attack rates seen in households where all
members were highly susceptible to the prevalent strain17 (see Sup-
plementary Information). We also assumed that 50% of infections
result in clinically recognizable symptoms, with the other 50% being
too mild to be diagnosed clinically18.
We cannot be certain that these parameter estimates would be

applicable to any new pandemic strain. It is possible that the
mutations or reassortment events that give rise to the new viral
strainmight initially increase its transmissibility only slightly over the
R 0 ¼ 1 threshold for self-sustaining transmission. In that case,
additional mutations would have to accumulate for viral fitness to
increase to its maximum. Given the extended viral shedding (and
symptomatic disease) seen in severe human cases of avian H5N1
infection, this might also mean that the Tg of the initial pandemic
strain could be considerably greater than for currently circulating
human influenza viruses. We therefore examine the ability of control
measures to contain pandemic spread not just at a single value of R0,
but for different values in the range 1 , R0 , 2, and analyse model
sensitivity to the assumed value of Tg.

Baseline epidemic dynamics

We consider the scenario that a new transmissible (R0 . 1) pandemic
strain arises as a result of mutations or a reassortment event in a single
individual infected with an avian virus. We seed simulations with a
single infection in the most rural third of the population (that is, with
the lowest population density), assuming that rural populations are
most likely to be exposed to the avian virus. Figure 2 shows the typical
pattern of spread for an emergent pandemic initiated by such a seeding
event assuming R0 ¼ 1.5, but note that for low R0, most epidemics
seeded by a single individual go extinct by chance before becoming
established in the population.
The pattern of spatial spread (Fig. 2a and Supplementary Video 1)

is of interest: for the first 30 days, cases tend to be limited to the
region around the seeding location, with few ‘sparks’ outside that
area. However, as case numbers increase exponentially, so does the
frequency with which infection events span large distances, and the
epidemic rapidly transforms from being predominantly local to
country-wide between days 60 and 90 (Fig. 2a–c). Any containment
policy needs to be effective before this transition, in part because
logistical constraints are likely to preclude containment of a widely
disseminated epidemic, but also because the probability of inter-
national export of infection becomes high once case numbers reach
the thousands (Hollingsworth, D., N. M. F. & Anderson, R. M.,
unpublished observations).
For R0 ¼ 1.5, the epidemic in the modelled population of 85

million peaks around day 150 and is largely over by day 200 (Fig. 2b),
at which point 33% of the population has been infected (Fig. 2d). At
R0 ¼ 1.8, the epidemic peaks around day 100 and infects about 50%
of the population.

Figure 1 | Data. a, Modelled population density of Thailand and 100-km
contiguous zone of neighbouring countries, based on Landscan24 data and
plotted on a logarithmic scale (light for low density, dark for high density).
Inset shows Bangkok in more detail. b, Age distribution of Thai population
in 2003 in 5-yr bands (blue), and the corresponding age distribution of the
simulated population (red). c, As b but showing distribution of household
sizes. d, Observed (solid lines) and modelled (dashed lines) distributions of
school sizes (blue, elementary; green, secondary; red, mixed). e, Probability
of travelling over a certain distance to work, estimated from data (blue) and

from the simulated population (red). f, Weekly excess influenza-related
mortality in 1918–1919 in Great Britain (red), and corresponding estimates
of the reproduction numberR (blue), calculated assuming Tg ¼ 2.6. g, Viral
shedding data for experimental influenza infection15 (expressed in tissue
culture infective doses (TCID50) per ml of nasal lavage fluid) compared with
themodelled profile of infectiousness over time. Note that the infectiousness
profile was not fitted to shedding data. See Methods and Supplementary
Information for more details.
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Effect of antiviral prophylaxis

In evaluating containment strategies, we focus on two principal
outcomemeasures: (1) the probability of preventing a large outbreak
(which would eventually lead to a global pandemic), and (2) the
number of courses of drug (assumed here to be oseltamivir) required
to achieve containment.
Blanket prophylaxis of an entire country or region should be able

to eliminate a pandemic virus with an R0 of 3.6 or greater (see
Methods). However, such a policy would require enough drug to
prophylax everyone for up to three weeks (that is, at least two courses
per person) and is hence unfeasible. Targeted strategies are therefore
needed to minimize drug usage while maximizing effect.
Social targeting is the most straightforward approach. This

involves prophylaxing individuals in the same household, school or
workplace as a newly diagnosed symptomatic case. Unfortunately, if
such a policy is only initiated after 20 or more cases, purely social
targeting only has a $90% probability of eliminating the pandemic
strain if R0 # 1.25 (lowest curve of Fig. 3a; see also Supplementary
Information). In reality, at least ten cases might have to be detected to
be sure that viral transmissibility had significantly increased19, and
detection and decision-making delays could easily mean 20–30 cases
had arisen before policy initiation. A containment policy will there-
fore probably have to go beyond social targeting in order to succeed.
As most community contacts are local, geographic targeting—
namely, prophylaxing the whole population in the neighbourhood
of the household in which a case is detected—is an obvious
policy extension, but one that will no doubt greatly increase
the logistical challenges to delivery. In the absence of detailed
administrative boundary data, we simulated geographic targeting
as the prophylaxis of the population within a ring of a certain
radius centred around each detected case, but in practice targeting
administrative areas is likely to be more practical. For social or
geographic prophylaxis, we assume that individuals are given a single
course of ten days of drug, after which time they come off the drug
unless more cases have arisen in their vicinity, in which case a second
round of prophylaxis is delivered. The policies therefore cease
automatically within ten days of the last case being reported.

Our analysis indicates that the additional effort required to deliver
a geographic policy pays substantial dividends in terms of policy
effectiveness. With a two-day delay from case onset to prophylaxis, a
5-km ring policy is able to contain pandemics with an R0 of 1.5
(Fig. 3a) at the cost of an average of 2million courses (Fig. 3b), but the
maximum number of courses needed can increase by an (unfeasible)
order of magnitude for scenarios in which cases arise in Bangkok at
an early stage of the outbreak. Policy effectiveness increases with the
radius of the treatment ring selected (but little benefit is gained from
exceeding 10 km), as does the number of courses required (Fig. 3b).
Policy outcome is still sensitive to the speed of case detection and
drug delivery, but containment is always substantially better than for
the purely socially targeted policy (Fig. 3d).
As pure radial prophylaxis is costly in terms of drug, we also

examined a policy variant that limits the number of people targeted
for prophylaxis per case by only targeting the nearestm people (where
m ¼ 10,000–50,000) within 10km of a newly diagnosed case. In areas
of low population density, this drug-sparing policy has the same effect
as a pure 10-km ring policy, but in high-density areas many fewer
courses of drug are used. The improved effectiveness in rural areas
outweighs decreased effectiveness in urban areas, resulting in a greater
effect than apure 5-kmring policy andmuch lowerdruguse (Fig. 3e, f).
Epidemiologically, elimination occurs either because the treat-

ment strategy reduces R0 to below 1, or because it reduces R0 to close
to 1 when the epidemic is small, thereby enhancing the probability of
random extinction. For scenarios in which the pandemic strain is
successfully eliminated, geographic spread is usually limited. For
example, the root mean square (r.m.s.) radius of spread is 27 km for
R0 ¼ 1.5 using the 5-km radial geographic targeting strategy. When
containment is successful, total case numbers are also limited to an
average of fewer than 150 cases.

Policies to increase social distance

Measures to increase social distance have been used in past
pandemics and remain important options for responding to future
pandemics1. However, predicting the effect of policies such as closing
schools and workplaces is difficult, as potentially infectious contacts

Figure 2 | Expected pattern of spread of an uncontrolled epidemic. a, Time
sequence (in days) of an epidemic, showing spreading in a single simulation
of an epidemic withR0 ¼ 1.5. Red indicates presence of infected individuals,
green the density of people who have recovered from infection or died.
b, Daily incidence of infection over time forR0 ¼ 1.5 in the absence of control
measures. Thick blue line represents average for realizations resulting in a
large epidemic, grey shading represents 95%confidence limits of the incidence
time series. Multiple coloured thin lines show a sample of realizations,
illustrating a large degree of stochastic variability. c, Rootmean square (r.m.s.)

distance from the seed infective for individuals infected since the start of the
epidemic as a function of time. Thick blue line represents average distance for
realizations resulting in a large epidemic, grey shading represents 95% limits.
d, Proportion of the population infected by age for R0 ¼ 1.5, averaged across
realizations that result in large epidemics. The infection attack rate is 33% for
R0 ¼ 1.5 and 50% for R0 ¼ 1.8. e, Distribution of the number of secondary
cases per primary case during the exponential growth phase of a R0 ¼ 1.5
epidemic. Between 50 and1,000 realizationswere used to calculate all averages
(see Supplementary Information).
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may be displaced into other settings. Furthermore, it is likely that
population contact rates change spontaneously (as well as a result of
policy) during severe epidemics (for example, 1918) in response to
the perceived risk. Therefore, the estimates of pandemic transmissi-
bility we derive from past pandemics might implicitly incorporate
the effects of some degree of social distancing.
We are therefore deliberately conservative in the assumptions

made here regarding the effect of school and workplace closure, by
assuming that household and random contact rates increase by 100%
and 50%, respectively, for individuals no longer able to attend school
or work. Figure 4a illustrates how adding area-based school and
workplace closure to a drug-sparing prophylaxis policy increases
policy effectiveness significantly, with the combined policy having a
.90% chance of elimination for R0 ¼ 1.7.
Quarantine zones, in which movements in and out of the affected

area are restricted, are another strategy for enhancing containment,
and may in any case be thought necessary to prevent population
flight from affected areas or deliberate entrance of people into
prophylaxis zones to receive drug. Figure 4a (see also Supplementary
Video 2) shows that such an area quarantine strategy can greatly
increase the effectiveness (to 90% containment at R0 ¼ 1.8) of
radial geographic targeted prophylaxis even if only 80% effective at
reducing movements. Combining school and workplace closure with
area quarantine and prophylaxis further increases policy effectiveness
(90% containment at R0 ¼ 1.9), and equally importantly, increases
the robustness of the policy to shortcomings in case identification or

treatment rates. For all these policies, containment is typically
achieved after fewer then 200 cases have been detected.

Logistical constraints and sensitivity to parameter assumptions

Other constraints may affect the ability of public health authorities to
deliver containment policies. Figure 4c shows that the size of an
antiviral stockpile can have a substantial effect on policies that use
pure radial geographic prophylaxis, as very large numbers of courses
are required to prophylax populations around cases arising in large
urban areas. However, policies using drug-sparing, geographically
targeted prophylaxis (Fig. 4d) retain high effectiveness provided that
at least 3 million drug courses are available. For scenarios in which
containment fails with a finite stockpile, Fig. 4e shows that even an
unsuccessful containment strategy can delay widescale spread by a
month or more—a potentially critical window of opportunity for
accelerating vaccine production.
Another possible constraint is that capacity to implement these

containment policies might not be present in all countries in the
region. A policy restricted to one country alone might have a
substantially reduced chance of success (Fig. 4f and Supplementary
Video 3) should the initial case cluster arise in a border region.
Multiple assumptions are inevitably made when undertaking

preparedness modelling for a future emergent infection. Sensitivity
analyses are therefore critical for assessing the robustness of policy
conclusions. Here, critical assumptions not already discussed include
(1) the ratio of within-place to community transmission, (2) the

Figure 3 | Prophylaxis strategies. We assume 90% of clinical cases (45% of
infections) are detected. Social targeting assumes prophylaxis of 90% of
household members and 90% of pupils or colleagues in 90% of the schools
or workplaces with detected cases. Geographic targeting assumes 90% of
people within 5, 10 or 15 km of a detected case are also prophylaxed.
a, Probability of eliminating an otherwise large epidemic using social and
geographic targeting, as a function of R0 of the new strain and the radius of
prophylaxis. Results assume policy initiation after detection of 20 cases and
a two-day delay from case detection to prophylaxis. Error bars show exact
95% confidence limits. b, Same as a, but showing average number of drug
courses required for containment of an otherwise large outbreak. c, Map of
northern Thailand (150 £ 150 km square), showing the extent of spread
during one contained R0 ¼ 1.8 epidemic assuming 10-km radial
prophylaxis and other parameters as in a. Treated areas shown in blue.
d, Same as a, but varying the delay (0–4 days) from case detection to
prophylaxis for the 5-km radius policy. e, f, Same as a and b, but for drug-
sparing policies that target only the nearest 10,000–50,000 people within
10 km of a detected case. Error bars show exact 95% confidence limits.

Figure 4 | Social distance measures. a, b, Same as Fig. 3a, b, but showing
the effect of drug-sparing prophylaxis (50,000 courses per case, as Fig. 3e)
together with: no social distance measures (red; as Fig. 3); 21-day closure of
90% of schools and 50% of workplaces within 5 km of a detected case (blue);
80% ‘area quarantine’ (that is, 80% reduction of movement in and out of a
zone defined by merging 5-km rings around all detected cases) for 21 days
(magenta); or a combination of school/workplace closure and area
quarantine (green). c, Same as a but showing the effect of limiting
availability of antiviral drugs to 1, 3 or 5 million courses on the effectiveness
of the combined area quarantine and 5-km radial prophylaxis policy.
d, Same as c but for drug-sparing geographic prophylaxis (50,000 courses
per case) plus area quarantine. e, Case incidence over time without
pandemic control measures and with the 3 million course policy of d,
showing the approximate one-month delay achieved even when
containment is unsuccessful (R0 ¼ 1.9). f, Same as a but showing the
reduction in policy effectiveness seen if the combined school/workplace
closure and drug-sparing prophylaxis policy is restricted to Thailand alone.
Error bars show exact 95% confidence limits.
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expected generation time, Tg, of a new pandemic strain (largely
determined by the duration of viral shedding and therefore infec-
tiousness), (3) the level of heterogeneity in individual infectiousness
(for example, ‘superspreaders’20), (4) antiviral efficacy/take-up, and
(5) the sensitivity and specificity of case detection during the control
programme. The effect of these assumptions on model output is
presented in the Supplementary Information. In summary, points
(4) and (5) are the most critical, as one might expect. If antiviral
coverage or efficacy is considerably less than assumed, then policy
effectiveness is substantially reduced. Similarly, if surveillance picks
up fewer than 40% of infections (that is, 80% of symptomatic cases),
policy effectiveness is again reduced. Poor surveillance specificity
(that is, false positives) has an indirect effect on effectiveness as a
result of wasted drug and logistical capacity.

Conclusions

We have shown that containment and elimination of an emergent
pandemic strain of influenza at the point of origin is feasible using a
combination of antiviral prophylaxis and social distance measures. A
key conclusion is the need for multiple approaches: simple socially
targeted prophylaxis is unlikely to be sufficient if the emergent virus
has transmissibility levels near those of previous pandemic viruses.
Geographically targeted policies are needed to achieve high levels of
containment, with area quarantine being particularly effective at
boosting policy effectiveness. The only scenario under which purely
socially targeted strategies might be sufficient would be if viral
transmissibility evolved incrementally and the emergent virus
initially had an R0 only slightly above 1 (see Supplementary Infor-
mation); however, R0 will be probably be uncertain at the time at
which containment policies have to be implemented, arguing for
precautionary policies that assume transmissibility comparable with
that of past pandemics.
A number of key criteria must be met for a high probability of

success: (1) rapid identification of the original case cluster, (2) rapid,
sensitive case detection and delivery of treatment to targeted groups,
preferably within 48 h of a case arising, (3) effective delivery of
treatment to a high proportion of the targeted population, preferably
.90%, (4) sufficient stockpiles of drug, preferably 3 million or more
courses of oseltamivir, (5) population cooperation with the contain-
ment strategy and, in particular, any social distance measures
introduced, (6) international cooperation in policy development,
epidemic surveillance and control strategy implementation. Contain-
ment is unlikely if R0 exceeds 1.8 for the new pandemic strain.
Although our analysis of past pandemics suggests that transmissibility
will fall below this threshold, it is unlikely that sufficient data will exist
to verify this before a containment policy has to be introduced.
Themathematical model we have used to examine the feasibility of

pandemic containment is perhaps the largest-scale detailed epidemic
micro-simulation yet developed. A key goal of the modelling was
parsimony. Although the representation of the population is
detailed, this detail is underpinned by available demographic data.
The natural history parameters used here have been estimated from
primary data on existing influenza strains. The model has five key
transmission parameters, of which two were estimated from house-
hold data and the remaining three were qualitatively calibrated to
historical age-dependent attack rates. We believe that this type of
simulation will increasingly become a standard tool for preparedness
planning and modelling of new disease outbreaks.
Given the set of criteria listed above for successful containment,

the obstacles to practical implementation of such a strategy are
undoubtedly formidable. Surveillance is perhaps the single greatest
challenge. Success depends on early identification of the first cluster
of cases caused by the pandemic strain19, and on detection of a high
proportion of ongoing cases. Some level of mildly symptomatic
infection is to be expected (and has been observed for human H5N1
infections21), but key to successful containment is the proportion of
such cases and their infectiousness. Should the high pathogenicity of

recently reported human infections with the H5N1 virus be even
partly maintained, then containment might paradoxically be more
likely, as case-ascertainment levels would be higher.
Achieving the rapid delivery of antiviral drugs to a large proportion

of the population raises many challenges. Thailand, the country
modelled here, is one of the best-prepared and equipped countries
in the region in terms of being able to implement a large-scale and very
rapid public health intervention. Other countries need considerable
development in basic healthcare and disease surveillance infrastruc-
ture in order to meet the needs of containment.
Antiviral resistance represents a currently unquantifiable challenge

to a prophylaxis-based containment strategy. The key will not be
whether genotypic or clinical resistance is seen in a percentage of
individuals, but whether resistant viruses are capable of self-sustaining
transmission (that is, have R0 . 1). Current evidence indicates that
fitness deficits in oseltamivir-resistant strains mean that their trans-
missibility is limited22,23, but we cannot rule out the possibility that
compensatory mutations that increase transmissibility might be
selected. If a transmissible resistant strain did emerge during
implementation of a containment policy, it would be essential for
prophylaxis to cease, lest the wild-type virus be eliminated and the
world be left with a pandemic of resistant virus. If prophylaxis were
abandoned, the likely higher fitness of the wild-type virus would give
every chance for the resistant strain to become excluded from the
population.
A feasible strategy for containment of the next influenza pandemic

offers the potential to prevent millions of deaths. It is therefore in the
interest of all countries to contribute to ensuring that resources,
infrastructure and collaborative relationships are in place within the
regionmost likely to be the source of a new pandemic. The challenges
are great, but the costs of failure are potentially so catastrophic that it
is imperative for the international community to prepare now, to
ensure that containment is given the best possible chance of success.

METHODS
Demographic data. The model used Landscan data24 to generate a simulated
population realistically distributed across geographic space (Fig. 1a). Thai census
data25,26 on household size and age distributions were used for demographic
parameterization (Fig. 1b, c). Data from the Thai National Statistical Office26

were used to determine the number and proportions of children in school as a
function of age, and data from the Thai Department of Education on 24,000
schools (available from the authors upon request) were used to determine the
distribution of school sizes (Fig. 1d). Data on travel distances within Thailand
were limited; here we used data collected in the 1994 National Migration
Survey27,28 on distances travelled to work (Fig. 1e and Supplementary Infor-
mation) to estimate movement kernel parameters. The best-fit kernel had
asymptotic power-law form as a function of distance d given by f ðdÞ,
1=½1þðd=aÞb�; where a ¼ 4 km and b ¼ 3.8. Thai workplace sizes29 also follow
a power-law distribution30, with an estimatedmaximum single workplace size of
approximately 2,300 and a mean of 21 individuals.
Disease data. The natural history of any H5-based pandemic strain will not be
known until it emerges, so we used parameter estimates for current human
influenza subtypes, and used sensitivity analyses to investigate what effect
deviation from these estimates would have on policy effectiveness (see Sup-
plementary Information). The mean ^ s.d. of the incubation period distri-
bution was estimated as 1.48 ^ 0.47 days, on the basis of data from a multiple-
exposure event occurring on an aeroplane31.

We adopt a more biologically realistic approach than most previous model-
ling studies (but see ref. 32), and rather than assuming that infectiousness is
constant from the end of the latent period until recovery, we model it as a
function, k(T) (assumed normalized), depending on the time elapsed from the
end of the latent period. The generation time, Tg, is given by the mean latent
period plus

Ð1
0 TkðTÞdT: Experimental infection data33 indicate the start of

symptoms to be coincident with a sharp increase in viral shedding, so we assume
that infectiousness starts at the end of the incubation period. We further assume
a 0.25-day delay from when symptoms start to when diagnosis or healthcare-
seeking behaviour is likely. We used bayesian methods (see Supplementary
Information) to estimate k(T) from data collected in a recent household study of
respiratory disease incidence34,35. Combined with the estimated incubation
period distribution, this gives the profile of infectiousness shown in Fig. 1g.
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Tg is estimated as 2.6 days (95% credible interval: 2.1–3.0), which is shorter than
previously assumed (but see ref. 36).
Transmissionmodel. The model is a stochastic, spatially structured, individual-
based discrete time simulation. Individuals are co-located in households, with
households being constructed to reflect typical generational structure while
matching empirical distributions of age structure and household size for
Thailand (Fig. 1b, c). Households are randomly distributed in the modelled
geographic region, with a local density determined by the Landscan data24. In
any time-step of DT ¼ 0.25 days, a susceptible individual i has probability
1 2 exp(2l iDT) of being infected, where l i is the instantaneous infection
risk for individual i. Infection risk comes from 3 sources: (1) household, (2)
place, and (3) random contacts in the community. The last of these depends on
distance, representing random contacts associated with movements and travel,
and is the only means by which infection can cross national borders. Analysis of
household infection data (see Supplementary Information), gave a within-
household R0 of 0.6 and an overall R0 of 1.8. We partition non-household
transmission to give levels of within-place transmission comparable with house-
hold transmission (that is, R0 < 0.6) and to qualitatively match 1957 influenza
pandemic age-specific attack rates. When varying R0, the relative proportions of
household, place and community transmission were kept fixed. Full model
details are given in the Supplementary Information.
Antiviral drug action.We use recent statistically rigorous estimates of antiviral
efficacy37, but these are broadly consistent with previous estimates22. Prophylaxis
of uninfected individuals is assumed to reduce susceptibility to infection by 30%,
reduce infectiousness if infection occurs by 60%, and reduce the probability of
clinically recognizable symptoms by 65% (ref. 37). In theory, blanket prophylaxis
of a population should be able to contain a pandemic with an R 0 of
1/[(1 2 0.6)(1 2 0.3)], or approximately 3.6. Treatment of a symptomatic
case is assumed to reduce infectiousness by 60% from when treatment is
initiated. Overall, for the parameter values used here, antiviral treatment of a
symptomatic case can reduce total infectiousness throughout the course of
infection by a maximum of 28%.
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