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Abstract.  The observance of unpredictable episodes of clustered volatility in some 
data series has led to the development of models of social processes that will give rise 
to such clustered volatility.  Such models are not, however, validated directly against 
qualitative evidence about the behaviour of individuals and how they interact.  An 
agent based simulation model of the effect of drought on domestic water consumption 
is reported here that is the outcome of a process of development involving 
stakeholders to inform and validate the model qualitatively at micro level while 
ensuring that numerical outputs from the model cohere with observed time series data.  
We argue that this cross-validation of agent based social simulation models is a 
significant advancement in the analysis of social process. 

1. The issues. 
The relationship between social processes and institutions and social statistics has 

been an important and controversial issue in sociology at least since the publication in 
1904-5 of Max Weber’s The Protestant Ethic and the Spirit of Capitalism (Weber 
1958).  In this paper, we are concerned with that relationship.  We argue that, on the 
basis of the evidence of social enquiry, analytic models do not obviously explain 
important properties of social statistics.  However, a class of simulation models does 
generate numerical outputs that are consistent with important properties of real social 
statistics.  These models have two further properties that should be of consuming 
interest to sociologists.  One is that they appear to produce data with empirically 
relevant properties because they capture features of social order that are the subject of 
sociological enquiry – the social embeddedness of individuals together with the 
emergence of social norms.  The other is that these models naturally draw upon and 
cohere with the sort of detailed, qualitative studies of social processes found in core 
strands of the sociological literature. 

Our central argument can be seen as an operationalisation of some elements of 
structuration theory (Giddens 1984).  According to Blaikie (1993), Giddens proposed 
that social research can take place at four related levels: (1) hermeneutic elucidation 
of frames of meaning, (2) investigation of context and form of practical 
consciousness, (3) identification of bounds of knowledgeability and (4) specification 
of institutional orders.  Of these four levels, says Blaikie, the first two are “micro” and 
best investigated qualitatively while the second two are “macro” and best investigated 
with quantitative methods.  This view is very close to ours.  The micro behaviour is 
the behaviour of observed actors and described by autonomous software modules 
called agents.  The macro behaviour is the behaviour of a social institution 
(organisation, community, set of customers, or whatever) or a collection of such 
institutions and is described by the properties of the model containing the agents.  The 
properties of the model as a whole are amenable to summary using descriptive 
statistics while the behaviour of the individual agents can (and we argue should) be 
described qualitatively.   
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We neither seek nor claim an exact parallel with structuration theory.  Agents are 
not replications of persons.  They are simplified, formal representations.  The 
simplicity and formality reduces the ambiguity of any analysis of their behaviour and 
social interaction at the cost of losing expressiveness relative to qualitative studies of 
observed actors.  Consequently, there seems little to be gained by an in-depth study of 
a hermeneutic circle of a social simulation model.  As will become evident below, 
there is more to be gained from an analysis of the social context of individual agents – 
the other agents with which they interact and the patterns and extent of the influence 
of specific agents upon one another.  At the macro level, our concern is with the 
identification of ‘statistical signatures’ that can be explained by appeals to qualitative 
micro level behaviour and interaction.  When such micro level phenomena can be 
demonstrated to describe aspects of observed social behaviour and interaction and, at 
the same time, to generate the macro level phenomena sharing the statistical signature 
of real social data, then we shall say that the model has been cross-validated.  That is, 
the micro level behaviour has been validated qualitatively by domain experts and the 
macro level data has been validated by comparing statistical properties of the 
numerical outputs from the models with real social statistics.  The link between the 
two is provided by simulations with the model.  The chains of causation identified in 
simulation runs demonstrate a possible explanation of the link. 

Our reliance on simulation models rather than closed analytic models together with 
our focus on empirical validation in relation to both qualitative and statistical data 
imply a methodology that relies on a close interaction between observation and 
conceptual development to the exclusion of prior theoretical specification.  Our 
argument and methodology are atheoretical.  We offer no view on the prospects for a 
general social theory but we do insist on the importance of observation-based 
conceptual development as a precursor to any future social theory.  

We begin in section 2 with an account of a widespread social statistical signature 
that is shown in section 3 to be consistent with the sociological phenomenon of social 
embeddedness.  In section 4, we give an example of cross-validation using a model of 
household water consumption incorporating agent designs based on descriptions of 
individual behaviour provided by domain experts from the UK water supply industry 
and regulatory agencies. 

2. Social statistical signatures 
Statistics are used by social scientists not only to inform descriptions of existing 

social phenomena but also to forecast future outcomes.  In practice, there are many 
events that cannot be forecast.  Indeed, there has never, in the history of statistical 
analysis, been a correct statistically based forecast of a turning point in either 
macroeconomic trade cycles or financial market prices and volumes.1  Moreover, it 
has been known for more than a quarter-century, that statistical relations obtained 
from regression analyses on data covering one time period typically support different 
explanations of social relationships than are indicated by data covering a later (post-
publication) time period (Mayer 1975). 

                                                

1 This statement which not been shown to be wrong in a wide search of the econometric and 
economic literature, circulation of the statement, with a request for disconfirmation, on the email 
discussion list of the International Institute of Forecasters, publication in a leading journal (Moss 
2002), or discussions with a wide range econometricians and social statisticians. 
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In this section, we concentrate on a general feature of social statistics of which the 
unpredictability of turning points and changing statistical relations are a special case.  
and demonstrate that the problem is far more general than is normally recognised.  
Since most social science models with this purpose are economic in nature and 
predictive in (avowed) purpose, we will start by examining their success.  Since they 
are predictive rather than explanatory in purpose, it is on predictive success they are 
judged.  Our purpose is more fundamental, namely to examine the usefulness of such 
kinds of model to capture social phenomena and the statistics derived from them. 

Both forecasting failure and unpredictable changes in estimated statistical 
relationships can be consequences of clusters of volatility in the data where neither 
the timing nor the magnitude nor the duration of the volatility can be predicted.  Some 
obvious cases are turning points in macroeconomic time series associated with 
upturns and downturns in economic performance (investment, employment, 
consumption, etc.) and turning points in stock market prices.  These turning points are 
marked by much bigger changes in the values of statistical variables than are observed 
between turning points – indeed, such marked  turning points are instances of 
clustered volatility. 

The usual explanations of unpredictable macroeconomic turning points are either 
some kind of structural change (Clements and Hendry 1995; Clements and Hendry 
1996) or that volatility begets volatility (for a while) (Bollerslev 1986; Engle 1982; 
Hansen 1982) so that the parameters of the statistical distribution from which 
observations are said to be drawn themselves vary over time.  The latter set of 
techniques constitute the approach of time varying parameters (TVP).  None of the 
estimating approaches associated with either of these explanations has yielded a 
correct forecast of a turning point or any other episode of volatility. The TVP 
approach has also been applied to financial data with no more success than to 
macroeconomic data (Bollerslev 2001). 

The only tests of the goodness of these techniques is their ability to capture salient 
aspects of the data series to which they are applied.  Like all other forecasting 
techniques, they fail to forecast future clusters of volatility.  The TVP approach does 
capture some aspects of previously observed data series but only because those 
aspects are already implicit in the estimating techniques (Tay and Wallis 2000). 

The wide recognition of the recalcitrance of macroeconomic and financial market 
turning points to forecasting has not been extended to the time series data from other 
social and economic processes.  Yet, the more general observation of unpredictable 
clusters of volatility appears to be far more widespread.  As Moss (2002) has pointed 
out in a slightly different context, unpredictably clustered volatility characterises the 
sales values and volumes of many fast moving consumer goods sold in UK and US 
supermarkets and, we now demonstrate, to domestic water consumption. 
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Figure 1: Daily water consumption (litres per day) in a metered UK 

neighbourhood 

It is clear from Figure 1 that there are occasional spikes, both upwards and 
downwards, in domestic water consumption that might be associated with weather 
conditions but that do not occur at the same times of the year.  While the quality of 
the data in general as good as we can expect, there is a long period from October, 
1995 into November 1997 when the readings were constant.  This is clearly a problem 
with the data collection and the data for that period has been excluded from all 
subsequent analysis.  Figure 2 shows the graph of proportional changes in the daily 
consumption of water. 
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Figure 2. Relative changes in daily water consumption 

The histogram in Figure 3 gives the frequency distribution of the changes in the 
daily values of water consumption and the continuous ogive is the normal distribution 
for the same mean, standard deviation and sample size.  The standard test for 
normality is the Kolmogorov-Smirnov statistic which gives, to three significant 
figures, zero confidence that the observed distribution is normal.  The higher, thinner 
peak of the actual frequency distribution with respect to the corresponding normal 
distribution is called leptokurtosis (= thin-peaked) and is due to the presence of 
significant numbers of values relatively far from the mean.  These distant values are 
manifestations of volatile episodes.   

 

Similar results are found in sales value and volume data for a wide range of fast 
moving consumer goods.  An example, reproduced from Moss (2002), is UK 
supermarket sales data for three brands of shampoo.  Similar results are found for 
virtually every one of the 120 or so brands of shampoo for which we have the data as 
well as every brand of tea, shaving preparations, biscuits and, in the US as well as the 
UK, every one of some 200 brands of spirituous alcoholic beverage and beers. The 
first row of Figure 4 shows weekly sales values. Brand A is a leading brand with no 
discernable sales trend while sales values of brand B are declining and sales values of 
brand C are increasing. Both of the latter have small market shares. The second row 
shows the time series of relative sales changes. Over the 65 weeks there were obvious 
clusters of volatility and it is these clusters that generated the extreme values that 
cause the leptokurtosis evident in the third row showing the frequency histograms of 
the relative sales changes compared with the corresponding normal distribution. 
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Figure 3: Frequency histogram and normal ogive for relative changes in daily 

water consumption data 

Each data set manifesting leptokurtosis and clustered, large changes in variable 
values can be ascribed a separate and special reason.  In markets for fast moving 
consumer goods, the phenomenon might be due to special offers (though we have 
found no evidence that this is so).  In water consumption data, the clustered changes 
could be due to the weather (though seasonally adjusting the data does not affect the 
outcome).  In the financial markets, there are speculative bursts (though it seems to us 
implausible that widespread shifts in expectations might be the result of strictly 
individual sentiment).  In national and international economic systems (or 
macroeconomies) episodes of large clustered changes are often put down to some 
kind of structural break or exogenous force (though if these were uniquely identifiable 
the occasions on which their consequences amounted to a turning point in the trade 
cycle ought also to be uniquely identifiable and hence correctly forecast).  Rather than 
to look only for special reasons to account for unpredictable and clustered volatility in 
each type of social institution, we find it natural to investigate whether there is any 
element of generality in the generation of these unpredictable phenomena. 
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Figure 4: Weekly shampoo sales and relative sales change; 2 Jan 2000-25 
March 2001 (Source: Information Resources International; reproduced 

from (Moss 2002)) 

3. Volatility and social embeddedness 
Following Granovetter (1985) and Edmonds (1999a), we define social 

embeddedness as a state in which an actor is significantly influenced by individual 
relationships with other actors. That is, the influences on the actor can not be 
modelled as if all actors were identical (by using, for example, representative or 
homogeneous agents).  The particularities of its interactions with those to which it 
relates have a significant impact upon the outcomes in the model. While social 
embeddedness neither implies nor denies optimising behaviour of the sort assumed by 
economists, it does mean that the simplifying assumptions used by economists in their 
formal analytic models critically distort the phenomena being analysed. 

 There appear to be no models incorporating agents as defined in conventional 
economic theory that generate the unpredictable volatile clusters described in the 
preceding section.  Indeed, results from a wide range of agent based social simulation 
models suggests that four conditions are associated with clustered volatility at the 
macro level.  The four conditions are:2 

• Individuals are metastable in the sense that they do not change their 
behaviour until some level of stimulus has been reached.  They would not, 
for example, reconfigure their desired shopping basket as a result of a penny 
rise in the price of a tin of tuna or change their religion because they dislike 
a sermon. A particular implication of metastability is that the behaviour of 
individuals cannot be represented by utility maximising agents. 

                                                

2 These are social interpretations of a more general set of conditions identified by Jensen (1998) in 
respect of physical models. 
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• Interaction among agents is a dominant feature of the model dynamics.  This 
amounts to social embeddedness in the sense of Granovetter (1985): the 
behaviour of individuals cannot be explained except in terms of their 
individual interactions with other individuals known to them. 

• Agents influence but do not slavishly imitate each other. 

• The system is slowly driven so that most agents are below their threshold 
(or critical) states a lot of the time.  In effect, most of us engage in routine 
behaviour most of the time without fundamentally changing either our 
behaviour or the expectations that drive that behaviour.  The system is 
slowly driven if we are not frequently being overwhelmed by pressures to 
change expectations and behaviour.  

An agent based social simulation model contains agents that are independent 
computer programs with an ability to perceive aspects of their environments 
(including some other agents) and to process those perceptions in order to produce 
some effect on their environment (including other agents) and perhaps to change the 
ways in which they process perceptions into actions.  As will be explained in more 
detail below, an important feature of agents is that they and their interactions can be 
designed by the modeller to describe the behaviour and interactions of social entities, 
whether individuals or organisational units.  Consequently, agent based social 
simulation models can be validated by comparing the agents and their social 
behaviour with individual and social behaviour found in real societies and by 
comparing the properties of numerical outputs of these models with the properties of 
real social statistics. 

Unfortunately the meanings of such phrases as “statistical signature” and “the 
properties of real social statistics” are by no means clear and unproblematic.  In some 
cases, the variance or even the mean of a distribution is not defined.  There is even no 
reason to believe that observed social statistics are drawn from some fixed, underlying 
population distribution and some reason to believe that (in some cases) they are not.  
These issues will be investigated in section 5.   In the meantime, we note that both 
societies and models can be viewed as data generating processes.  Many social 
arrangements including national economies, retail shops and supermarkets and 
collections of households generate time series data marked by clusters of volatility the 
timing, magnitude and duration of which cannot in practice be forecast.  Models with 
by the above four characteristics also generate time series data with the same 
clustered volatility properties. 

In the following section, we describe a model and the background to its 
development in order to exhibit the extent to, and ways in which, that model is 
validated by domain experts.  We also report simulated time series data generated by 
the model under various assumptions in order to suggest that the simulated data, like 
the real data, exhibit unpredictable clusters of volatility.  We also note the 
incompleteness of the validation as well as problems with the identification of the 
statistical signatures of leptokurtosis due to clustered volatility. 

4. A model of social influence on domestic water consumption 
The model reported in this section has been developed through five distinct 

versions.  The first version was constructed with little input of domain expertise in 
order to capture the effect of enjoinders on households to conserve water during 
periods of drought.  This version demonstrated that social influence was sufficient 
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significantly to reduce domestic water consumption when a minority of households 
were easily influenced by official requests provided that some households were so 
influenced and other households were influenced by other households with whom 
they had some stable relationship and were, in a well defined sense, similar to 
themselves.  Domain experts from the water supply companies evaluated the first 
version which they found deficient in that, when a drought ended, aggregate water 
consumption immediately returned to its pre-drought levels.  The second version was 
designed to address this deficiency.  Whereas, in the first version, households would 
observe and be influenced by the actions of their neighbours in the prevailing 
conditions, in the second version it was only the neighbours’ actions that influenced 
households and, moreover, the influence as assumed to decay over time in accordance 
with evidence from experimental cognitive science (Anderson 1993).3 

The third version of the model introduced the effect of new technology on 
domestic water consumption.  Because of Victorian public health legislation in the 
United Kingdom, it was not until recently permitted to apply mains pressure to 
domestic hot water.  As a result, “power showers” were introduced in the early 1990s 
which involved the pumping of shower water under substantially higher pressure than 
could previously be obtained.  This was clearly a high-water-use technology, the 
adoption of which would increase domestic water consumption.  The first model 
version to incorporate technical change resulted in the complete adoption of power 
showers within a few months of their introduction.  In fact, the penetration of power 
showers among households in the regions for which we have data has not, after more 
than a decade, reached 45%.  While adoption was driven by the same sort of social 
influence that drove the responses to enjoinders to conserve water during periods of 
drought,  there were no impediments to adoption by households.  Informants from the 
UK Environment Agency, the regulator responsible for water quality and supply 
sufficiency, suggested that in practice power showers are installed as part of a more 
general bathroom renovation and households do not normally renew bathrooms more 
frequently than once in five years.  Other appliances such as dish washers and 
washing machines are replaced either as part of a wider renovation or when they 
break down. The representation in the model of such restraints on replacement and 
therefore innovation has served to replicate the broad time pattern of changes in 
ownership patterns.4 

We do not claim that the representation of household behaviour by agents is 
accurate.  Only that it reflects the views of domain experts from the water supply 
companies and the relevant regulating agency.  Further validation could be obtained 
by means of standard survey and interview techniques.  These would enable us to 
elaborate the agents as representations of households and perhaps to calibrate the 
model, especially in relation to the susceptibility of households to influence either 
from government and water companies or from their social networks. 

The model was not designed to illustrate the effects of social embedding in agent-
based social simulations but was incrementally developed to reflect expert and 
stakeholder opinion on the influences on households with respect to their habits 
concerning the use of water-consuming appliances, and hence, indirectly, how much 
                                                

3 For a more detailed account of this development, see (Downing, Moss and Pahl Wostl 2000) 
4 The latest versions of the model were implemented by our student, Olivier Barthelemy. 
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water they consume.  Only later did we discover that it also demonstrated the role 
social embedding plays in creating the sort of fat-tailed time series with clustered 
volatility that we have been discussing.  However, this was not surprising since our 
experience leads us to expect this result from models of this kind. 

 The water consumption model focuses upon the behaviour of households, in 
particular how the household-to-household behavioural influence affects the 
aggregate demand for water.  Thus the heart of the model is a network of agents each 
of which represents a single household.  These are distributed randomly on a two 
dimensional grid.  These ‘households’ can only interact with those with a certain 
distance of them, vertically and horizontally – their ‘neighbours’.  The totality of 
households and their potential interactions can be considered to represent a 
community or cluster. 

 
Figure 5. Influence network of between ‘most-similar’ households at a typical 

instant of simulation time 

We know from a half-century or more of social psychological studies (refs) that 
individuals tend to form stable social relationships with persons with whom they 
already have common social backgrounds and interests and, once such relationships 
are formed, the opinions and behaviour of these individuals tend to be similar.   In 
order to capture this finding, agents are designed endorse as most similar to 
themselves those neighbours whose water consumption behaviour is most like their 
own.  Such neighbours are then of particular importance in terms of influence.  The 
network of all the possible avenues of influence by such endorsed neighbours is 
shown in Figure 5.  The total web of possible influences among households is not 
shown as it is too dense to be sensibly displayed.  This structure was chosen to be 
consistent with what domain experts told us about influence between households.  
The result is that agents are given a non-uniform local network of relationships within 
which each household determines neighbours by which they are most influenced. 
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The external environment for each household consists of: the temperature and 
precipitation; the exhortations of the policy agent (which used to be a government 
agency and is now the local water company); and, critically, the neighbouring 
households.  Each household has a number of different water-using devices such as: 
showers, washing machines, hoses etc.   The distribution and properties of these 
devices among agents matches the distribution of these appliances among households 
as obtained in a recent survey.  The numerical outputs include the volume of water the 
used by each  household in each appliance from which we calculate total domestic 
water consumption and the time patterns of the effects of new technologies on water 
consumption. 

The domestic water consumption model captures hydrological phenomena as well 
as processes of social influence that are believed to affect the domestic demand for 
water.  The hydrological element determined the addition to the water supply each 
month given actual temperature and precipitation as well as the month (hence hours of 
daylight influencing water transpiration (from plants and animals) and evaporation 
into the atmosphere.  Since our temperature and precipitation data was monthly, the 
month was the level of time step used to calculate consumption. 

Each month, each household adjusts its water-using habits, in terms of the amount 
it uses each device, and whether it acquires new devices (such as power showers).  It 
does this adjustment based on the following: what devices it has; its existing habits; 
what its neighbours do (except for private devices such as toilets); and what the water 
company may be suggesting (in times of drought).  The weighting that each 
household uses for each of these is different and is set by the modeller.  In many of 
the runs it was set such that about 55% of the households were biased towards 
imitating a neighbour; 15% were predisposed to listen to the water company and the 
rest were largely immune to outside suggestion.  Obviously it is not known what 
proportions might be more realistic in terms of real communities, but anecdotal 
accounts suggest it varies greatly between communities.   

The “policy agent” represents the body responsible for issuing guidance to 
consumers as to water use in times of water shortage (currently this is the individual 
water companies in each area).  In the model there is a calculation of the level of 
ground water derived from the climatological data, and the policy agent starts issuing 
suggestions during the second month where the ground is dry.  In subsequent dry 
months its suggestions are to use increasingly less water. 

The model structure is illustrated in Figure 6. 
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Figure 6. The structure of the model of domestic water demand 

The model does not attempt to capture all the influences upon water consumption.  
In particular it does not include any direct influence of the weather upon micro-
component usage nor does it include any inherent biases towards increased usage due 
to background social norms such as increased cleanliness.  The behaviour of the 
policy agent is not sophisticated since it is the reaction of the households that is 
important here. 
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Figure 7. Simulated relative change in monthly consumption 
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Figure 8. Relative changes in simulated monthly water consumption 

The times series from an typical run is shown in Figure 7. It exhibits clustered 
volatility similar to that seen in the water data usage shown above (Figure 2).  The 
histogram of the relative changes is shown in Figure 8 – this shows the same level of 
leptokurtosis as was seen in the corresponding histogram for the water usage shown 
above (Figure 3). 

Equally importantly, the model exhibited a variety of responses to the same 
external conditions.  Figure 9 shows the aggregate usage from the model for 12 
different runs of the same model subject to the same climate data and external 
interventions (principally the droughts in 1976, 1990 and 1996, the introduction of 
power showers in 1990 and new water-saving washing machines in late 1992).5 

                                                

5 The bold line giving the median water consumption at each time step naturally exhibits less 

volatility than the water consumption in the individual runs.  This shows how descriptive statistics can 

hide what might be important features of the outputs from simulation experiments. 
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Figure 9.  12 runs of the water demand model under the same conditions (bold 

line is median demand) 

To investigate the importance of the embedding of the agents in the model, we ran 
the model again with exactly the same structure, parameters and inputs, but with the 
neighbourhood relations randomised.  That is, where in the previous versions of the 
model a household might be influenced by its neighbours as to its patterns of water 
usage, in this version the neighbour ‘sees’ a different random selection of neighbours 
each time.  Thus patterns of influence are randomised and different at each time 
period in the simulation.  The corresponding patterns of aggregate water usage that 
are produced by the model are shown in Figure 10. 

In the version where the social embedding is disrupted we notice two ways in 
which the aggregate behaviour is different to the original version.  Firstly, there is a 
greater level of local oscillation in the demand.  Secondly, there is almost no 
systematic, collective response to the occurrence of droughts, as is indicated by the 
course of the median of the demand lines.  The consequences of the removal of social 
embedding from the model is that we no longer capture events that were of 
considerable importance to stakeholders.  That is, prior to the privatisation of the 
water supply industry in the United Kingdom, exhortation and to save water 
restrictions on water use during droughts were effective to the point of neighbours 
reporting others who were, despite hosepipe and sprinkler bans, watering their 
gardens.  After privatisation, there was public concern about the very large increases 
in senior managerial remuneration packages and outrage at the discovery that more 
than half the water in the mains was lost through leakage while households were 
being exhorted to conserve water.  As a consequence, there was very little reduction 
in household water consumption post-privatisation.  Our models with and without 
social embeddedness support the conjecture that social responses are conditioned by 
social embeddedness. 



 15

0

20

40

60

80

100

120

140

160

180

200

Jan-
73

Jan-
74

Jan-
75

Jan-
76

Jan-
77

Jan-
78

Jan-
79

Jan-
80

Jan-
81

Jan-
82

Jan-
83

Jan-
84

Jan-
85

Jan-
86

Jan-
87

Jan-
88

Jan-
89

Jan-
90

Jan-
91

Jan-
92

Jan-
93

Jan-
94

Jan-
95

Jan-
96

Jan-
97

Date

A
gg

re
ga

te
 U

sa
ge

 
Figure 10. 12 runs of the water demand model under the same conditions 

where the social embedding is disrupted (bold line is median demand) 

5. Descriptive Statistics vs. Statistical Models 
The presumption that statistics is ‘science’ but qualitative research is ‘mere 

anecdote’ is at variance with our experience of participatory agent based modelling. 

Our agent-based models often produce time series data that are characterised by 
clustered volatility and high levels of leptokurtosis.  This is not because we tune our 
models to produce these kinds of time series but seems to be a consequence of the 
characteristics we put in to our models, namely: social embeddedness; the prevalence 
of social norms; and individual behaviour.  The reason we often make models with 
these characteristics is that these are a necessary part of making our models consistent 
with the observations of sociologists and other domain experts concerning the 
behaviour of the actors concerned.  The fact that the time series derived from social 
phenomena often have these same characteristics may indicate that the models are on 
the right track.   

This is in sharp contrast to many statistical approaches, where it is assumed that 
conventional statistical models and tools will apply.  These assumptions are often 
completely unwarranted and seem to be made purely because due to a perceived lack 
of choice.  The burden of proof should be on those who wish to make these 
assumptions, otherwise they will be merely ‘muddying’ the debate with statistical 
artefacts by presenting ‘results’ that do not fundamentally derive from the social 
phenomena we are concerned.  It is not possible to prove that such assumptions are 
wrong – it is always logically possible that there is an well-defined, fixed distribution 
function underlying the time series, even when all the indications of available data are 
to the contrary.  One can always assume that such a distribution can be recovered by 
means such as: increasing the sample size; considering a longer series; and excluding 
‘exceptional’ events.   

The time series that results from social phenomena and the agent-based models of 
these phenomena provide some evidence against these sort of assumptions.  Agent-
based models that seek to be consistent with the anecdotal evidence of how social 
actors behave often produce time series which are best described by power laws, 
Pareto distributions and the like.  The extreme ‘peaks’ observable in the time series 
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they produce do not always result from substantial or exceptional factors but are 
intrinsic products of the processes captured by the models.  This adds credibility to 
the hypothesis that similar processes could be responsible for the similar time series 
derived from social phenomena.  

If one insists on assuming the time series obtained from social phenomena can not 
only be described by fixed distributions in a post-hoc manner but are also generated 
by them (in some underlying or a priori way), then the high levels of leptokurtosis 
and clustered volatility do not support an assumption that such distributions as the 
normal, binomial are applicable, but rather fit those like the Pareto distribution.  With 
the Pareto distribution high levels of leptokurtosis indicate that the second moment 
(the variance) is undefined – in other words, that you as you take longer samples the 
variance will not tend to a limiting, ‘stable’ value.  In fact, over half of its parameter 
space, the Pareto distribution do not even have a defined mean.   

If we were to suppose that a particular social process generates data described by a 
Pareto distribution function, then the prevalence of leptokurtosis implies that, in 
general, that distribution function has no defined variance and very likely has no 
defined mean.  That is, increasing the number of observations will not result in the 
convergence of an undefined mean or variance to any fixed population value. 

Considered as a data generating process, social institutions in this case would not 
produce numerical data that can be treated as if they were drawn from an underlying 
population distribution.  We would not expect social environments marked by 
clustered and unpredictable volatility to generate data described by a fixed frequency 
distribution.  This is because social institutions frequently respond to episodes of 
volatility by changing the behaviour of the institution.  A clear example is the changes 
in the norms and rules governing trading in organised financial markets.  These rules 
are typically changed after a serious downturn as happened after the financial panics 
of the 19th century (after which stocks were issued fully paid up), certainly after the 
1929 crash (when the value of debt that stockbrokers could lend customers against 
their portfolio values were limited by law in the United States) and, more recently, 
after the 1987 downturn in world stock markets (when trading pauses were introduced 
in conditions where automated trading appeared to have become unstable).  Other 
example include corporate reorganisations, consequences of technical change and 
changes in political regimes (e.g., the French Revolution or the ‘revolutions’ in 
Eastern Europe in 1989). 

That there is no evidence that the variance of daily domestic water consumption is 
settling down to a defined variance can be seen in Figure 11.6   This figure is similar 
to the (lack of) convergence found by Mandelbrot (1963) in financial time series. 

                                                

6 The measure of cumulative variance used here is taken from (Mandelbrot 1963). 
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Figure 11: The cumulative variance of log changes in daily domestic water 
consumption (litres per day) in a metered UK neighbourhood (derived from 

the figures illustrated in figure 1 above). 

It is likely that much of the apparent normality of some socially derived time series 
is an artefact of the way they are produced.  A consequence of the central limit 
theorem is that any averaging in the construction of the data (either implicit as in 
summing over fixed time periods or explicit) will tend to make the data appear more 
normal.  For example if daily time series has a high descriptive leptokurtosis then the 
monthly series will have a much lower level of leptokurtosis. To illustrate this we 
took the water consumption data illustrated above in Figure 2 and averaged it in 
consecutive groups (e.g. the first four numbers, the second four etc.) and then 
constructed frequency distributions of the resulting figures.  Three of these 
distributions are illustrated in Figure 12.  The distribution becomes clearly less 
leptokurtic as the grouping size increases.  The Kurtosis for different levels of 
averaging is shown in Table 1. 

Group size 1 2 4 8 16 32 

Kurtosis 2490.0 130.1 82.5 39.5 33.5 15.7 

Table 1. Kurtosis of the frequency distribution of relative changes of water 
consumption after being binned into different size groups 

Group size 2 Group size 8 Group size 32 

Figure 12. The frequency distributions of the relative changes, grouped in 
sizes 2, 8 and 32 respectively 
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This result serves to illustrate the difference between descriptive statistics and 
statistical models of the underlying process.  The former is a numerical description of 
some data whilst the later is a model of the data-generating process – conflating the 
two can be misleading. 

The lack of an underlying fixed distribution behind the phenomena indicates a 
capacity endogenously to generate dynamic and/or structural change.  This change 
results, in part, from the ability of a system to ‘re-wire’ itself into new configurations.  
It seems plausible that this ability is limited by the complexity of the system.  
Although agent-based models are considerably more complex that analytic models 
they are still formal systems and, hence, much simpler than the social processes they 
seek to capture.  The simplistic nature of the influence mechanisms in the water 
demand model and its limited size (40 or 100 agents, depending on the purpose of the 
experiment) are probably not sufficient to bring about such structural changes 
endogenously.  Indeed this is indicated by the fact that, unlike the real water demand 
statistics, the variances of the demands from the model do seem to be defined.  The 
equivalent of Figure 11 for the demand time series derived from the embedded model 
is shown in Figure 13. 
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Figure 13. The cumulative variance of changes in the log values of the water 

demand time series derived from 12 runs of the model. 

It seems essential to us that in good (social) science, observation of how processes 
actually occur should take precedence over assumptions about the aggregate nature of 
the time series that they produce.  That is, generalisation and abstraction are only 
warranted by an ability to capture the evidence.  Simply conflating descriptive 
statistics with a (statistical) model of the underlying processes does not render the 
result more scientific but simply more quantitative.  

In the end this comes down to deep assumptions about the nature of the 
phenomena one is concerned with, especially about the characteristics of what might 
be considered as ‘noise’.  In any model one will only be able to capture limited certain 
aspects of what one is modelling – the rest can be thought of as ‘noise’.  However one 
can not assume that this noise is random (in a statistical sense), just because it is 
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unpredictable.  One can not even assume that this noise will obey the ‘Law of Large 
Numbers’ – which, broadly stated, is the property that random noise will cancel out 
faster than any ‘signal’ as sample size increases. Models that illustrate this possibility 
include Kaneko’s example of ‘Globally coupled chaos’ and Brian Arthur’s ‘El Farol 
Bar’ model (Arthur 1994) as investigated in (Edmonds 1999b).  What we do not 
understand about social phenomena, even through the lens of aggregate time series, 
can not be dealt with as simply as an engineer might treat meaningless electrical 
fluctuations.   

6.  Conclusion 
The water consumption model presented in this paper represents an attempt to 

describe a social process that is consistent with both the qualitative data provided by 
stakeholders and other domain experts and observed characteristics of time series data 
concerning domestic water consumption.  Each successive version of the model has 
been subject to validation by domain experts.  Their validation concerned both the 
representation of agent behaviour and interaction as well as characteristics of the 
aggregate time series output (especially the recovery of demand after drought-induced 
restrictions have been rescinded). 

This approach differs fundamentally from the usual approaches to statistical 
research. and extends the usual approaches to qualitative research.  Both of these 
features of our approach depend crucially on the use of agent based social simulation 
models. 

Although agent based modelling is in widespread use, the agents are not 
universally implemented as descriptions of the behaviour of observed social entities.  
It is not uncommon, for example, for agents to be specified as genetic algorithms 
(Chen and Yeh 2002; LeBaron, Arthur and Palmer 1999; Palmer et al. 1993) or as 
artificial neural networks (LeBaron 2002) or as players in a game theoretic setting 
(Macy and Sato 2002)7.   While these agent designs are sometimes implemented in 
simulation models addressing issues of concern to sociologists such as trust or social 
norms, the agents themselves cannot be compared directly with the behaviour of  the 
individuals or composite social entities they are intended to represent.  Such designs 
do not facilitate validation of the agents using qualitative data and qualitative research 
methods.  Particularly in the case of models of financial markets, such agent based 
models do generate leptokurtic time series data due to clustered volatility.  Typically, 
these models satisfy the four conditions of agent metastability, interaction, social 
influence and being slowly driven.  We do not know whether all such models will 
generate leptokurtosis and volatility8 but we do know that commonly they do. 

What these models show is that the observed features of aggregate time series data 
for financial markets, macro economies and markets for fast-moving consumer goods 
can be the result of data generating processes in which there is no individual 
maximising behaviour and in which interaction among individuals is crucial.  
However the TVP models discussed in section 2 also produce aggregate time series 

                                                

7 Macy (1991) reviews the earlier literature in this area. 
8 Jensen (1998) points out that there only a few, rather special analytical results on systems of this 

type.  Consequently we can only conjecture about the generality of the relationship between these four 
conditions and unpredictable, clustered volatility and hence leptokurtosis. 
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data with the same observed properties.  And these models are intended to be 
consistent with the economic  rational expectations hypothesis based on the 
presumption that individual do maximise utility and that they are not socially 
embedded.  Although the TVP models, unlike the agent based models, have no 
formally elaborated micro element, they are neither more nor less well validated than 
the agent based models implementing agents as genetic algorithms, artificial neural 
networks or game theoretic strategies. 

We have shown that descriptive statistics are insufficient to identify the processes 
that generated the data. We have also shown that, provided the data is sufficiently fine 
grained, some models of data generating processes can be shown to be consistent with 
that data and some can be excluded.  But to choose among the classes of models that 
purport to describe the underlying data generating process must require some 
additional discriminants.  To avoid mere tautology, such discriminants must be 
empirically based.  Additional statistical data is of no help since we have already 
shown that such data cannot be used to discriminate among the possible data 
generating processes.  If we are not to use statistical data for this purpose, we must 
use qualitative data or at least data describing micro behaviour.  In designing and 
developing our domestic water consumption model, we used qualitative data and 
assessments provided by domain experts and, in particular, by stakeholders in the 
water resource management process.  As a result, the models were assessed 
independently in relation to the macro level statistical data and the micro level 
qualitative data – the process we have called cross-validation. 

We believe it to be both interesting and important that the process of validating the 
model qualitatively at the micro level is clear and straightforward while the validation 
using macro level statistics is suggestive and based on visual impressions of clustered 
volatility.  This experience stands on its head the notion that qualitative research is 
mere anecdote while statistics is science. 

Our aim has been to demonstrate that agent based models have the particular 
strength that they can be validated with respect to both qualitative and statistical data 
and at both micro and macro levels.  In so doing, we have identified a number of 
further issues that need to be addressed. 

 We have reported that some of our models generating leptokurtosis and clustered 
volatility do and some do not produce time series data with apparently convergent 
moments of the frequency distributions of those data.  The differences in the models 
that lead to these different results might well be important but we have no idea of 
what it is that causes those differences.  In particular, we do not know whether these 
differences are artefacts of the model or something the model represents about social 
relations and individual behaviour.   We simply point out that if the distributions are 
stable, then a non-convergent variance is consistent with a Levy distribution and a 
convergent variance is not.  This result will be important to those who investigate 
empirical distributions of personal incomes, firms sizes, market shares, city sizes or 
any of the other power law distributed cross sectional and time series economic data 
since power law distributions are a consequence of the Levy distribution. 

A second problem is that the notion of the “statistical signature” is without formal 
content.  If we are to use the features of social statistical data to identify classes of 
possible models of social data generating processes, then it would clearly be useful if 
we could relate formal descriptors of the data to features of suitable data generating 
processes. 
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We have also pointed out that the common practice in social simulation of 
producing a series of runs and then reporting summary statistics such as median 
values can hide important episodes of volatility.  Yet, the reasons for running suites of 
simulation experiments – to identify robust properties of the models – is surely valid.  
There is a tension here that needs to be addressed. 

Finally, we do not claim to be experts in qualitative research.  We are, however, 
aware that some social researchers are uncomfortable about generalising from the 
experiences of individual organisations and institutions.  We do not speculate as to 
whether there is any justice in this position but we do claim that more formal 
representations of qualitative evidence by agent based social simulation models 
provides a means of identifying any general properties of social systems that are 
consistent with independently observed macro level data. 
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